239 resultados para Bivalve molluscs


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Mediterranean Sea, infralittoral and circalittoral rocky bottoms (from 15 to 120 m) are characterized by a biogenic habitat, named "coralligenous", formed by the concretion of calcareous organisms, mainly algal thalli, and- to a lesser extent- by animal skeletons. This complex habitat is inhabited by a rich fauna that belongs to different taxonomic groups. Sponges, bryozoans, cnidarians and ascidians are the most common sessile organisms that inhabit the area while crustacean and molluscs are the common mobile organisms. Little information on the diversity of the molluscs that thrive in the coralligenous habitat is known while this information is highly important for biodiversity management purposes. After thoroughly studying the available and accessible published literature, a database for the molluscs of the coralligenous habitat has been designed and implemented for the collection and management of this information. From its index compilation more than 511 species of molluscs have been recorded so far from the coralligenous formations, the majority of which belongs to the class Gastropoda (357 sp.) followed by the Bivalvia (137 sp.), Polyplacophora (14 sp.), Cephalopoda (2 sp.) and Scaphopoda (1 sp.). Among these, the gastropod Luria lurida (Linnaeus, 1758) and Charonia lampas (Linnaeus, 1758), the endemic bivalve Pinna nobilis Linnaeus, 1758 and the endolithic bivalve Lithophaga lithophaga (Linnaeus, 1758), are protected by international conventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two hundred and seventy five mollusc species from the continental shelf off Southern Spanish Sahara (depth: 32-60 m) were identified. Their distribution pattern is strongly influenced by the nature of the bottom (firm substrate, shelter, stability of sediment) rather than other factors at that depth interval. This faunal assemblage shows great affinity to the Mediterranean and Lusitanian faunas, and comprises only few (22 %) exclusively Senegalese and species living south of Senegal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high input of lithogenic sediment from glaciers was assumed to be responsible for high Fe and Mn contents in the Antarctic soft shell clam Laternula elliptica at King George Island. Indeed, withdrawal experiments indicated a strong influence of environmental Fe concentrations on Fe contents in bivalve hemolymph, but no significant differences in hemolymph and tissue concentrations were found among two sites of high and lower input of lithogenic debris. Comparing Fe and Mn concentrations of porewater, bottom water, and hemolymph from sampling sites, Mn appears to be assimilated as dissolved species, whereas Fe apparently precipitates as ferrihydrite within the oxic sediment or bottom water layer prior to assimilation by the bivalve. Hence, we attribute the high variability of Fe and Mn accumulation in tissues of L. elliptica around Antarctica to differences in the geochemical environment of the sediment and the resulting Fe and Mn flux across the benthic boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicentennial and absolutely-dated shell-based chronology for the marine environment of the North Icelandic Shelf has been constructed using annual growth increments in the shell of the long-lived bivalve clam Arctica islandica. The region from which the shells were collected is close to the North Atlantic Polar Front and is highly sensitive to the varying influences of Atlantic and Arctic water masses. A strong common environmental signal is apparent in the increment widths, and although the correlations between the growth increment indices and regional sea surface temperatures are significant at the 95% confidence level, they are low (r ~ 0.2), indicating that a more complex combination of environmental forcings is driving growth. Remarkable longevities of individual animals are apparent in the increment-width series used in the chronology, with several animals having lifetimes in excess of 300 years and one, at 507 years, being the longest-lived non-colonial animal so far reported whose age at death can be accurately determined. The sample depth is at least three shells after AD 1175, and the time series has been extended back to AD 649 with a sample depth of one or two by the addition of two further series, thus providing a 1357-year archive of dated shell material. The statistical and spectral characteristics of the chronology are investigated by using two different methods of removing the age-related trend in shell growth. Comparison with other proxy archives from the same region reveals several similarities in variability on multidecadal timescales, particularly during the period surrounding the transition from the Medieval Climate Anomaly to the Little Ice Age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs.