574 resultados para Bellingshausen Sea, small escarpment at shelf break
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
The work carried out by the physical oceanography group on POLARSTERN Leg ANT-V/3 concentrated on four major topics: A. A large scale survey of the eastern boundary between the Weddell gyre and the open ocean. On the way to the coastal polynya in early October 12 CTD stations were carried out between 54°30'S, 6°E and 70°30'S 8°W. Another set of 16 stations was obtained in early December on the way back north. During this transsect three current meter moorings were recovered at Maud Rise. The path between the current meter arrays was used to run an additional section to the NNE across the top of Maud Rise. B. A large scale survey of the Antarctic Coastal Current along the eastern shelf area. To obtain the water mass characteristics along the eastern Weddell shelf 36 CTD stations were carried out between Atka Bay and the Filchner Trench. Most of the stations were located on the shelf. Cross shelf sections were obtained both near Drescher Inlet and off Halley Bay, in the divergence area of the Coastal Current where the continental slope turns to the west and south of Vestkapp at Neptune's Point. A longshore section over 120 km was run north of Vestkapp. C. A mesoscale survey of the Antarctic Coastal Current off Drescher Inlet. The experimental work consisted of 37 CTD-stations and direct current measurements. The CTD-profiles were grouped into seven sections perpendicular to the coast line off Drescher Inlet extending once over 70 km but normally over 35 km. The profile depth ranged from 300 m on one section to the complete water column at two sections. Most sections consist of five stations providing highest resolution over the upper continental slope with offshore increasing spacing. The stations were chosen to represent the shelf (450 m), the shelf break (800 m), the upper slope (1600 m), the lower slope (2400 m) and the transition to the abyssal plain (3400 m). Rough topography and difficult ice conditions made it impossible to meet those requirements in all cases. D. A small scale survey of the hydrographic conditions under the sea ice. The motivation for these studies arose during the cruise. Consequently a suitable Instrumentation had to be developed at sea. This was done with a NB-Smart CTD which was inserted on an L-shaped lever through a hole in the ice. However, various water intrusions into the instrument resulted in the failure of this technique. In consequence a special lever system was built to position a NB Mark 3b weighing about 40 kg below the ice. Twenty four profiles were obtained reaching from the bottom of the ice down to 2 m below the ice surface with a maximum distance of 1 m from the entry hole. As the conductivity sensor was influenced by nearby ice platelets, salinity samples where drawn to check the sensor.
Resumo:
On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ~26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic delta18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ~13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic delta13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ~8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east-west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.
Resumo:
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden, is discussed based on sub-bottom seismic records and sediment cores. The sea floor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjorden up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from the glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front retreated from the outermost shelf around 14.8 ka. A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was interrupted by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscandian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isfjorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice front terminated far out in the main fjord. The remnants of the Barents Sea Ice Sheet melted quickly away as a response to the Holocene warming around 10 ka.