63 resultados para Bathymetric correction
Resumo:
The 1 : 1,500,000 AWI Bathymetric Chart of the Gakkel Ridge (AWI BCGR) has been developed from multibeam data measured during the Arctic Mid-Ocean Ridge Expedition in 2001 (AMORE 2001, ARK-XVII/2). This expedition was conducted to investigate the Gakkel Ridge in the Arctic Ocean and was carried out by the icebreaking research vessels RV Polarstern and USCGC Healy. Polarstern is equipped with the multibeam sonar system Hydrosweep DS-2, whereas Healy carries Seabeam 2112. During the expedition an area of 8890 km length and 18 - 46 km width, situated between 82°N/8°W and 87°N/75°E, was surveyed simultaneously by both vessels. Water depths ranged from 566 to 5673 meters. Dense sea ice cover derogated the sonar measurements and decreased data quality. Data errors were corrected in an extensive post-processing. The data of two different sonar systems had to be consolidated in order to derive a high resolution bathymetry of the Gakkel Ridge. Final result was a digital terrain model (DTM) with a grid spacing of 100 meters, which was utilized for generating the map series AWI Bathymetric Chart of the Gakkel Ridge, consisting of ten map sheets.
Resumo:
A ship-based acoustic mapping campaign was conducted at the exit of Ilulissat Ice Fjord and in the sedimentary basin of Disko Bay to the west of the fjord mouth. Submarine landscape and sediment distribution patterns are interpreted in terms of glaciomarine facies types that are related to variations in the past position of the glacier front. In particular, asymmetric ridges that form a curved entity and a large sill at the fjord mouth may represent moraines that depict at least two relatively stable positions of the ice front in the Disko Bay and at the fjord mouth. In this respect, Ilulissat Glacier shows prominent differences to the East Greenland Kangerlussuaq Glacier which is comparable in present size and present role for the ice discharge from the inland ice sheet. Two linear clusters of pockmarks in the center of the sedimentary basin seem to be linked to ongoing methane release due to dissociation of gas hydrates, a process fueled by climate warming in the Arctic realm.