179 resultados para Basic carbonate
Resumo:
Stable oxygen- and carbon-isotope ratios of Rhaetian (upper Triassic) limestone samples from the Wombat Plateau, northwest Australia, were measured to explore possible diagenetic pathways that the material underwent after deposition in a shallow-water environment, before plateau submergence in the Early Cretaceous. Host sediment isotopic values cluster near typical marine carbonate values (d18O ranging from -2.57 per mil to +1.78 per mil and d13C, from +2.45 per mil to +4.01 per mil). Isotopic values of equant clear calcite lining or filling rock pores also plot in the field of marine cements (d18O = +1.59 per mil to -2.24 per mil and d13C = +4.25 per mil to +2.57 per mil), while isotopic values for neomorphic calcites replacing skeletal (megalodontid shell) carbonate material show a wider scatter of oxygen and carbon values, d18O ranging from +2.73 per milo to -6.2 per mil and d13C, from +5.04 per mil to +1.22 per mil. Selective dissolution of metastable carbonate phases (aragonite?) and neomorphic replacement of skeletal material probably occurred in a meteoric phreatic environment, although replacement products (inclusion-rich microspar, clear neomorphic spar, etc.) retained the original marine isotopic signature because transformation probably occurred in a closed system dominated by the composition of the dissolving phases (high rock/water ratio). The precipitation of late-stage equant (low-Mg?) calcite cement in the pores occurred in the presence of normal marine waters, probably in a deep-water environment, after plateau drowning. Covariance of d18O and d13C toward negative values indeed suggests influence of meteorically modified fluids. However, none of the samples shows negative carbon values, excluding the persistence of organic-rich soils on subaerial karstic surfaces (Caribbean-style diagenesis). Petrographical and geochemical data are consistent with the sedimentological evidence of plateau drowning in post-Rhaetian times and with a submarine origin of the >70-m.y.-long Jurassic hiatus.
Resumo:
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.