273 resultados para Argo
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
Volcanic basement recovered at Hole 765D is characterized by nonpervasive, oxidative alteration, typical of seafloor weathering. Chilled margins and the mesostasis of the lavas are variably altered to assemblages of celadonite, Fe-oxyhydroxides, zeolites, and calcite with trace saponite. Plagioclase is partially altered to Ca-Na zeolites and/or albite. Well-developed alteration halos parallel fracture surfaces and extend several centimeters into the surrounding rock. These clay-rich halos are enriched in K2O and Fe2O3 relative to the adjacent clay-poor rock. The halos and adjacent rock are characterized by d18O values 2 per mil-3 per mil higher than those of fresh MORB. The "freshness" of the samples and the scarcity of saponite suggest that the duration of seawater circulation was short-lived. Albitization of plagioclase indicates that the volcanic rocks were altered initially at low temperatures and were subsequently reheated off-axis in a closed environment. Reheating did not result in significant modification of the bulk composition of the crust.
Resumo:
Twenty-one samples, ranging in depth from 0 to 150 meters below seafloor (mbsf), were obtained from Leg 123 Sites 765 and 766. All samples were tested for Atterberg limits: 14 for laboratory vane shear strength and seven for uniaxial consolidation. Based on the determined Atterberg limits, along with shipboard measurements of water content, the sediment appears to be underconsolidated from 0 to 40 mbsf at Site 765 and from 0 to 80 mbsf at Site 766. Normal consolidation trends were observed for the sediments below these depths. Vane shear strengths, when compared with calculated values for a normally consolidated clay, indicate underconsolidated sediment at both sites. However, the use of Atterberg limit and vane shear strength data to assess consolidation state is complicated by the presence of silt-sized calcium carbonate in the form of nannofossil ooze. Thus, uniaxial-consolidation test data were analyzed to determine the overconsolidation ratios (OCR) and sediment compressibilities. OCR values were found to be less than one (underconsolidated) at both sites, using two separate methods of analysis.
Resumo:
Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Benthic foraminifers were studied in 99 samples collected from the lower 200 m of Hole 765C. The studied section ranges from the Tithonian to Aptian, and benthic foraminifers can be subdivided into five assemblages on the basis of faunal diversity and stratigraphic ranges of distinctive species. Compared with deep-water assemblages from Atlantic DSDP sites and Poland, assemblages from the Argo Abyssal Plain display a higher diversity of agglutinated forms, which comprise the autochthonous assemblages. Assemblages at the base of Hole 765C are wholly composed of agglutinated forms, reflecting deposition beneath the carbonate compensation depth (CCD). Most calcareous benthic species are found in turbidite layers, and the presence of an upper Valanginian Praedorothia praehauteriviana Assemblage may indicate deposition at or just below the CCD. The P. praehauteriviana Assemblage from Hole 765C is the temporal equivalent of similar assemblages from DSDP Holes 534A, 416A, 370, 105, and 101 in the Atlantic Ocean and Hole 306 in the Pacific Ocean. Stratigraphic ranges of cosmopolitan agglutinated species at Site 765 generally overlap with their reported ranges in the Atlantic and in the bathyal flysch sequences of the Carpathians; however, several species from Hole 765C have not been previously reported from Uppermost Jurassic to Lower Cretaceous abyssal sediments.