119 resultados para Amino acid content
Resumo:
The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.
Resumo:
Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords
Resumo:
Amino acid-based geochronological analyses were carried out on fossil mollusc shell and foraminifera from Unit 3.1, Cape Roberts Project core CRP-1. Ratios of D-alloIsoleucine to L-Isoleucine (D/L) were measured from 19 fossil samples using cation exchange High Performance Liquid Chromatography (HPLC) methods. Preliminary interpretation of these results suggest that Unit 3.1 contains carbonate fossils having multiple ages. The interpreted ages have a bimodal distribution between ~220 Ka (Quaternary) and ~2.4 Ma (Pliocene). However, these results lack a comprehensive regional and taxonomic context for amino acid studies in Antarctica and therefore should be regarded as preliminary age estimates of fossil shell ages.
Resumo:
Kinetic parameters for the epimerization of isoleucine in multispecific foraminiferal asemblages were used to establish the effects of burial depth and the geothermal gradient on the extent of reaction. It was observed that with a little as thirty meters of burial in a normal thermal regime there were differences between the extent of epimerization measured and that which would have been predicted for thermal equilibrium with bottom water temperatures. As would be expected, these differences are greatest when the heat flow (the geothermal gradient) and/or the sedimentation rates are highest. These effects were observed in most of the DSDP samples studied, and have been used to estimate the average heat flux since the time of sample deposition. Occasional anomalous effects were observed which could not be related to past or present heat flux. These were determined to be due to such geologic occurrences as slumping and reworking or to recent sample contamination. Other problems emerged related to bottom water temperatures including changes over geologic time which are unknown and could not be deduced. Thus, the presence of epimerization anomalies in DSDP cores as noted above limits the effectiveness of amino acid geochronology in such cores, unless these anomalies can be recognized as ab initio.