84 resultados para Albedo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A radiosonde is described for measuring the upward and downward fluxes of visible light in the atmosphere. Photoresistors are used as sensors, the optical center of the spectral range beeing at 0.55 µ. The results of these flux-measurements obtained during the Atlantic Expedition 1965 with the research vessel "Meteor" are presented. The datas have been divided into three groups according to the amount of cloudiness. In group a) (small cloudiness) the extinction coefficient of the prevailing linear radiation is derived as a function of the height. Characteristics of airmasses of maritime or continental origin are shown. In group b) (cloud covered sky) microphysical quantities are determined from the radiative lapse rate in the clouds. The average radius of droplets is found to lie between 5.5 µm and 14.4 µm. The albedo of cloud surfaces varies between 25% and 54%, the transmission values are between 58% and 73%. One ascent through a Cirrus cloud of considerable vertical thickness is treated seperately. The observed distribution of extinction is compared with theoretical values in water clouds leading to the same order of magnitude. The relation between the albedo of the surface of the sea and the amount of cloudiness is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quality-controlled snow and meteorological dataset spanning the period 1 August 1993-31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m**2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the northwest Arabian Sea upwelling occurs each summer, driven by the strong SW monsoon winds. Upwelling results in high biological productivity and a distinctive assemblage of plankton species in the surface waters off Oman that are preserved in the sediments along the Oman continental margin, creating a geologic record of monsoon-driven upwelling. Sediments recovered from the Oman continental margin during Ocean Drilling Program leg 117 provide an opportunity to examine how upwelling has varied during the late Quaternary, spanning a longer interval than piston cores recovered prior to the ODP cruise. Variations in foraminifer shell accumulation and in the relative abundance of Globigerina bulloides indicate dominant cycles of variation at 1/100 kyr, the dominant frequency of glacial-interglacial variations, and at 1/23 kyr, the frequency of precessionally driven cycles in seasonal insolation. The strongest monsoon winds (indicated by increased upwelling) occurred during interglacial times when perihelion was aligned with the summer solstice, an orbital change that increased the insolation received during summer in the northern hemisphere. During glacial times upwelling was reduced, and although the precessional cycles were still present their amplitude was smaller. At both frequencies the upwelling cycles are in phase with minimum ice volume, evidence that glacial-interglacial climate changes also include changes to the climate system that influence the low-latitude monsoon. We attribute the decrease in the monsoon winds observed during glacial times to changes in bare land albedo over Asia and/or to changes in the areal extent and seasonal cycle in Asian snow cover that decrease the summer land-sea temperature contrast. Other mechanisms may also be involved. These new upwelling time series differ substantially from previous results, however the previous work relied on cores located farther offshore where upwelling is less intense and other physical mechanisms become important. Our results support the observations derived from atmospheric general circulation models of the atmosphere that indicate that both glacial boundary conditions, and the strength of summer insolation are important variables contributing to cycles in the monsoon winds during the late Quaternary.