66 resultados para Active Layer Detachments
Resumo:
Analysis of molecular composition of alkanes in bottom sediments of the southern part of Dvina Bay (White Sea) in October 2001 revealed the following main peculiarities of hydrocarbon behavior in the estuary: dominating of high molecular C23-C45 compounds and irregular distribution of hydrocarbons in bottom sediments as a result of high sedimentation rate and active hydrodynamics in the studied area.
Resumo:
The major aim of this study was to examine the influence of an embedded viscoelastic-plastic layer at different viscosity values on accretionary wedges at subduction zones. To quantify the effects of the layer viscosity, we analysed the wedge geometry, accretion mode, thrust systems and mass transport pattern. Therefore, we developed a numerical 2D 'sandbox' model utilising the Discrete Element Method. Starting with a simple pure Mohr Coulomb sequence, we added an embedded viscoelastic-plastic layer within the brittle, undeformed 'sediment' package. This layer followed Burger's rheology, which simulates the creep behaviour of natural rocks, such as evaporites. This layer got thrusted and folded during the subduction process. The testing of different bulk viscosity values, from 1 × 10**13 to 1 × 10**14 (Pa s), revealed a certain range where an active detachment evolved within the viscoelastic-plastic layer that decoupled the over- and the underlying brittle strata. This mid-level detachment caused the evolution of a frontally accreted wedge above it and a long underthrusted and subsequently basally accreted sequence beneath it. Both sequences were characterised by specific mass transport patterns depending on the used viscosity value. With decreasing bulk viscosities, thrust systems above this weak mid-level detachment became increasingly symmetrical and the particle uplift was reduced, as would be expected for a salt controlled forearc in nature. Simultaneously, antiformal stacking was favoured over hinterland dipping in the lower brittle layer and overturning of the uplifted material increased. Hence, we validated that the viscosity of an embedded detachment strongly influences the whole wedge mechanics, both the respective lower slope and the upper slope duplex, shown by e.g. the mass transport pattern.
Resumo:
The comprehensive isotopic composition of atmospheric nitrate (i.e., the simultaneous measurement of all its stable isotope ratios: 15N/14N, 17O/16O and 18O/16O) has been determined for aerosol samples collected in the marine boundary layer (MBL) over the Atlantic Ocean from 65°S (Weddell Sea) to 79°N (Svalbard), along a ship-borne latitudinal transect. In nonpolar areas, the d15N of nitrate mostly deriving from anthropogenically emitted NOx is found to be significantly different (from 0 to 6 per mil) from nitrate sampled in locations influenced by natural NOx sources (-4 ± 2) per mil. The effects on d15N(NO3-) of different NOx sources and nitrate removal processes associated with its atmospheric transport are discussed. Measurements of the oxygen isotope anomaly (D17O = d17O - 0.52 × d18O) of nitrate suggest that nocturnal processes involving the nitrate radical play a major role in terms of NOx sinks. Different D17O between aerosol size fractions indicate different proportions between nitrate formation pathways as a function of the size and composition of the particles. Extremely low d15N values (down to -40 per mil) are found in air masses exposed to snow-covered areas, showing that snowpack emissions of NOx from upwind regions can have a significant impact on the local surface budget of reactive nitrogen, in conjunction with interactions with active halogen chemistry. The implications of the results are discussed in light of the potential use of the stable isotopic composition of nitrate to infer atmospherically relevant information from nitrate preserved in ice cores.
Resumo:
The number of cysts of marine planktic infusoria was determined in oligotrophic waters of the central Indian Ocean and productive waters of the Southeast Pacific. Cyst biomass at stations studied varied from 1.2 to 23.4 ?g/l, which was 9.9-115.8% of free infusoria biomass in the 0-15 m layer in the Indian Ocean and 0.3-19.3% in the Southeast Pacific.
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.