73 resultados para Acanthocardia echinata
Resumo:
We present a detailed study of glacial/interglacial deep sea benthic ostracod assemblage variability at IODP Site U1314 (subpolar North Atlantic) in relation to the history of ice-rafting events and changes in deep ocean circulation over the past 170 ky. Our records of ostracod diversity, abundance and dissolution and sediment properties (IRD and CaCO3) show an excellent correspondence to high amplitude orbital and millennial variability observed in the climate records (d13C and d18O) from neighboring deep water sites, suggesting that the benthic meiofauna fluctuates synchronously with the prevailing oceanographic conditions (surface ocean conditions, deep ocean circulation and water temperature and food flux). Krithe (dominant), Argilloecia and Cytheropteron are the most abundant and diverse genera in association with Rockallia enigmatica. Three ostracod assemblages are recognized. The genera Pennyella, Argilloecia, Pelecocythere, Ambocythere, Pseudobosquetina, Bradleya and Nannocythere are associated with interglacials and interstadials, and possibly reflect increased flux of food to the sediments and more vigorous NADW formation. A transitional assemblage composed of species of Cytheropteron, Xestoleberis and Eucythere is restricted to climatic transitions and indicate moderate environmental conditions and seasonal productivity. A glacial/stadial assemblage is characterized by a temporal predominance of either intermediate-depth and shallow water Arctic/subarctic species (belonging to Cytheropteron, Polycope, Pedicythere, Swainocythere, Cluthia, Heterocyprideis, Elofsonella and Finmarchinella) or abyssal North Atlantic ostracods (Bythocythere, Dutoitella, Bathycythere and Bythocypris). The influx of high latitude taxa can be partially explained by ice-rafting, but may also represent a shift of the location of intermediate and deep water convection to the area south of Iceland. Therefore the combination of species characteristic of different watermasses during glacials may reflect shifts in the influence of high nutrient southern source water (e.g. AABW) vs. low nutrient GNAIW during glacials.
Resumo:
The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.