70 resultados para AMINO-ACID-METABOLISM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amino acid-based geochronological analyses were carried out on fossil mollusc shell and foraminifera from Unit 3.1, Cape Roberts Project core CRP-1. Ratios of D-alloIsoleucine to L-Isoleucine (D/L) were measured from 19 fossil samples using cation exchange High Performance Liquid Chromatography (HPLC) methods. Preliminary interpretation of these results suggest that Unit 3.1 contains carbonate fossils having multiple ages. The interpreted ages have a bimodal distribution between ~220 Ka (Quaternary) and ~2.4 Ma (Pliocene). However, these results lack a comprehensive regional and taxonomic context for amino acid studies in Antarctica and therefore should be regarded as preliminary age estimates of fossil shell ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic parameters for the epimerization of isoleucine in multispecific foraminiferal asemblages were used to establish the effects of burial depth and the geothermal gradient on the extent of reaction. It was observed that with a little as thirty meters of burial in a normal thermal regime there were differences between the extent of epimerization measured and that which would have been predicted for thermal equilibrium with bottom water temperatures. As would be expected, these differences are greatest when the heat flow (the geothermal gradient) and/or the sedimentation rates are highest. These effects were observed in most of the DSDP samples studied, and have been used to estimate the average heat flux since the time of sample deposition. Occasional anomalous effects were observed which could not be related to past or present heat flux. These were determined to be due to such geologic occurrences as slumping and reworking or to recent sample contamination. Other problems emerged related to bottom water temperatures including changes over geologic time which are unknown and could not be deduced. Thus, the presence of epimerization anomalies in DSDP cores as noted above limits the effectiveness of amino acid geochronology in such cores, unless these anomalies can be recognized as ab initio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese sturgeon (Acipenser sinensis), mainly distributed in the Yangtze River, has been listed as a grade I protected animal in China because of a dramatic decline in population owing to loss of natural habitat for reproduction and interference by human activities. Understanding the proteome profile of Chinese sturgeon liver would provide an invaluable resource for protecting and increasing the stocks of this species. In this study, we have analyzed proteome profiles of juvenile Chinese sturgeon liver using a one-dimensional gel electrophoresis coupled to LC-MS/MS approach. A total of 1059 proteins and 2084 peptides were identified. The liver proteome was found to be associated with diverse biological processes, cellular components and molecular functions. The proteome profile identified a variety of significant pathways including carbohydrate metabolism, fatty acid metabolism and amino acid metabolism pathways. It also established a network for protein biosynthesis, folding and catabolic processes. The proteome profile established in this study can be used for understanding the development of Chinese sturgeon and studying the molecular mechanisms of action under environmental or chemical stress, providing very useful omics information that can be applied to preserve this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.