164 resultados para 956.94054
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.
Resumo:
Oligocene to Pleistocene bathyal benthic foraminifers at Broken Ridge (Site 754) and Ninetyeast Ridge (Site 756), eastern Indian Ocean, were investigated for then- stratigraphic distribution and their response to paleoceanographic changes. Q-mode factor analysis was applied to relative abundance data of the most abundant benthic foraminifers. At Site 754, seven varimax assemblages were recognized from the upper Oligocene to the Pleistocene: the Gyroidina orbicularis-Rectuvigerina striata Assemblage in the uppermost Oligocene; the Lenticulina spp. Assemblage in the upper Oligocene to lower Miocene, and in lower Miocene to lowermost middle Miocene; the Burseolina cf. pacifica-Cibicidoides mundulus Assemblage in the lower Miocene; the Planulina wuellerstorfi Assemblage in the upper middle Miocene; the Globocassidulina spp. Assemblage in the upper Miocene; the Gavelinopsis lobatulus-Uvigerina proboscidea Assemblage in the Pliocene; and the Ehrenbergina spp. Assemblage in the Pleistocene. The major faunal changes are complex, but exist between the Lenticulina spp. Assemblage and the P. wuellerstorfi Assemblage at ~13.8 Ma, and between the Ehrenbergina spp. Assemblage and the G. lobatulus Assemblage at ~5 Ma. The development of the P. wuellerstorfi and Globocassidulina spp. Assemblages after 13.8 Ma is correlated with the decrease in temperature of the intermediate waters of the ocean, in turn related to Antarctic glacial expansion. The faunal changes at ~5 Ma are related to the development of low oxygen intermediate water, formed in the presence of a strong thermocline. At Site 756, six varimax assemblages are distributed as follows: the Cibicidoides cf. mundulus-Oridorsalis umbonatus Assemblage in the lower Oligocene; the Epistominella umbonifera-Cibicidoides mundulus Assemblage from the upper Oligocene to the lower Miocene; the Cibicidoides mundulus-Burseolinapacifica Assemblage from lower Miocene to the lower middle Miocene; the Globocassidulina spp. Assemblage from the upper lower Miocene to the Pliocene; the Uvigerina proboscidea Assemblage in the upper Miocene and the Pliocene; and the Globocassidulina sp. D Assemblage in the Pliocene. The main faunal change at this site is between the E. umbonifera Assemblage and the Globocassidulina spp. Assemblage, at ~17.1 Ma. The timing of this faunal change is coeval with faunal changes in the North Atlantic and the Pacific. The change is related to a change in bottom water characteristics caused by an increased influence of carbonate corrosive water from the Antarctic source region, and a change in surface productivity. A low oxygen event at Site 756, which started at about 7.3 Ma, occurred about 2.3 m.y. before that at Site 754. The different response to global paleoceanographic changes is not yet explained, but may be due to the difference of marine topography and the degree of upwelling
Hydrochemistry measured on water bottle samples during Johan Hjort cruise 58JH1092_1 on section AR18
Resumo:
The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.
Resumo:
Über die Verbreitung, Gliederung und Ausbildung des Jungtertiärs im westlichen Schleswig-Holstein war bisher nicht viel bekannt. Am besten bearbeitet sind die glazial gestauchten Schollen von Morsum/Sylt. Eine Aufzählung erbohrter Miozänvorkommen mit nicht immer überzeugender Begründung lieferte H.-L. HECK 1935. S. THIELE (1941) hat die ihm bekannten Vorkommen hauptsächlich nach faziellen und petrographischen Gesichtspunkten bearbeitet. Er erkannte richtig die Stellung der Braunkohlensande. Die angekündigte palaeontologische Bearbeitung ist nicht erschienen. Eine allgemeine Übersicht über die Entwicklung des Jungtertiärs bringen W. WOLFE und H.-L. HECK 1949. W. HINSCH lieferte wertvolle Beiträge zur Molluskenfauna und zur Gliederung des Miozäns (1952, 1955). Über neue Vorkommen von Braunkohlen-Sanden berichtete E. DITTMER(1 956), eine erste Übersicht über neue Vorkommen der Hemmoorer Stufe gab derselbe Verfasser 1957.