389 resultados para 867
Resumo:
Two cruises were carried out during the Austral spring-summer (November 1995 - January 1996: FRUELA 95, and January - February 1996: FRUELA 96), sampling in Bellingshausen Sea, western Bransfield Strait and Gerlache Strait. We investigated whether there were any spatial (among locations) or temporal (between cruises) differences in abundance and biomass of microbial heterotrophic and autotrophic assemblages. Changes in the concentration of chlorophyll a, prokaryotes, heterotrophic and phototrophic nanoflagellates abundance and biomass were followed in the above mentioned locations close to the Antarctic Peninsula. Parallel to these measurements we selected seven stations to determine grazing rates on prokaryotes by protists at a depth coincident with the depth of maximum chlorophyll a concentration. Measuring the disappearance of fluorescent minicells over 48 h assessed grazing by the protist community. From prokaryotes grazing rates, we estimated how much prokaryotic carbon was channeled to higher trophic levels (protists), and whether this prokaryotic carbon could maintain protists biomass and growth rates. In general higher values were reported for Gerlache Strait than for the other two areas. Differences between cruises were more evident for the oligotrophic areas in Bellingshausen Sea and Bransfield Strait than in Gerlache Strait (eutrophic area). Higher values for phototrophic (at least for chlorophyll a concentration) and abundance of all heterotrophic microbial populations were recorded in Bellingshausen Sea and Bransfield Strait during late spring - early summer (FRUELA 95) than in mid-summer (FRUELA 96). However, similar results for these variables were observed in Gerlache Strait as in spring-early summer as well as in mid-summer. Also, we found differences in grazing rates on prokaryotes among stations located in the three areas and between cruises. Thus, during late spring-early summer (FRUELA 95), the prokaryotic biomass consumed from the standing stock was higher in Bellingshausen Sea (26%/day) and Gerlache Strait (18-26%/day) than in Bransfield Strait (0.68-14%/day). During mid-summer (FRUELA 96) a different pattern was observed. The station located in Bellingshausen Sea showed higher values of prokaryotic biomass consumed (11%/day) than the one located in Gerlache Strait (2.3%/day). Assuming HNF as the main prokaryotic consumers, we estimated that the prokaryotic carbon consumed by heterotrophic nanoflagellates (HNF) barely covers their carbon requirements for growth. These results suggest that in Antarctic waters, HNF should feed in other carbon sources than prokaryotes.
Resumo:
Lower Miocene through upper Pleistocene benthic foraminifer assemblage records from Ocean Drilling Program Site 751 on the Southern Kerguelen Plateau (57°44'S, water depth 1634 m) were combined with benthic and planktonic foraminifer oxygen and carbon isotope records and high-resolution CaCO3 data from the same site. Implications for the Neogene productivity and paleoceanography of the southern Indian Ocean are discussed. We used distinctive features of the Miocene d18O and d13C curves for stratigraphic correlation. Coinciding with a lower middle Miocene hiatus from 14.2 to 13.4 Ma, there was a rapid increase in benthic d18O values by 1.2 per mil. This distinct increase occurs in middle Miocene benthic foraminifer oxygen isotope curves from all oceans. No major change, however, in benthic foraminifer faunal composition occurred in this period of growth of the Antarctic ice cap and cooling of deep ocean waters (14.9-14.2 Ma). A drastic change in benthic foraminifer faunas coincided with a hiatus from 8.4 to 5.9 Ma. Shortly after this hiatus, in the latest Miocene, the CaCO3 content of the sediments dropped from 75% to 0%. From that time ( 5.8 Ma) through the early Pliocene, Site 751 has been situated beneath a high biogenic siliceous productivity zone. Carbonate contents of upper Pliocene and Pleistocene sediments vary between 20% and 70%. The benthic foraminifer faunas in the uppermost Pliocene and lower Pleistocene reflect strong bottom current conditions, in contrast to those in the upper Pleistocene, which indicate calm sedimentation and high food supply. High d13C values of planktonic foraminifers compared with low values of benthic foraminifers suggest high primary productivity in the late Pleistocene. The changes in productivity were probably a result of latitudinal migration and meandering of the Polar Frontal Zone.