108 resultados para 7 (2 hydroxyethyl)guanine
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
Over the Uruguayan shelf and uppermost slope the coalescence of northward flowing Subantarctic Shelf Water and southward flowing Subtropical Shelf Water forms a distinct thermohaline front termed the Subtropical Shelf Front (STSF). Running in a SW direction diagonally across the shelf from the coastal waters at 32°S towards the shelf break at ca. 36°S, the STSF represents the shelf-ward extension of the Brazil-Malvinas Confluence zone. This study reconstructs latitudinal STSF shifts during the Holocene based on benthic foraminifera d18O and d13C, total organic carbon, carbonate contents, Ti/Ca, and grain-size distribution from a high-accumulation sedimentary record located at an uppermost continental-slope terrace. Our data provide direct evidence for: (1) a southern STSF position (to the South of the core site) at the beginning of the early Holocene (>9.4 cal ka BP) linked to a more southerly position of the Southern Westerly Winds in combination with restricted shelf circulation intensity due to lower sea level; (2) a gradual STSF northward migration (bypassing the core site towards the North) primarily forced by the northward migration of the Southern Westerly Winds from 9.4 cal ka BP onwards; (3) a relatively stable position of the front in the interval between 7.2 and 4.0 cal ka BP; (4) millennial-scale latitudinal oscillations close to 36°S of the STSF after 4.0 cal ka BP probably linked to the intensification in El Niño Southern Oscillation; and (5) a southward migration of the STSF during the last 200 years possibly linked to anthropogenic influences on the atmosphere.