520 resultados para 63-473


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been considerable discussion concerning the biostratigraphic correlations between planktonic zonations and the classical Neogene California benthic foraminiferal stages. One of the primary objectives of IPOD Leg 63 was to investigate these correlations and to determine the possibility of temporal variation of the benthic stages between California land sections and the outer Continental Borderland. In addition, it was anticipated that analyses of the benthic foraminiferal faunas at Site 468 would provide critical information on the paleoenvironmental history of the outer borderland. The provincial benthic Neogene foraminiferal stages were established by Kleinpell (1938) for the Miocene and Natland (1952) for the Pliocene-Pleistocene; both are well-documented in designated type sections. These stages have been used for interbasinal correlations, although time-transgressive problems have been suggested by several authors (Bandy, 1971; Ingle, 1967, 1973; Crouch and Bukry, 1979). An important biostratigraphic sequence occurs at Site 468, significant because of its relatively shallow depth of approximately 1700 meters. The samples yield well-preserved benthic foraminiferal faunas throughout most of the Neogene sequence and are accompanied by abundant well-preserved calcareous and siliceous planktonic assemblages. It is this co-occurrence of both planktonic and benthic faunas that enables the correlation of outer continental margin sediments with those of the classical land-based sections of southern California.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid and organic nitrogen isotopic (delta15N) compositions of two common deep-water corals (Lophelia pertusa and Madrepora oculata) collected from selected locations of the NE Atlantic are compared to the composition of suspended particulate organic matter, in order to determine their principle food source. Initial results suggest that they may feed primarily on zooplankton. This is based on the increased abundances of mono-unsaturated fatty acids and alcohols and the different ratios of the polyunsaturated fatty acids, 22:6/20:5 of the corals when compared to those of the suspended particulate organic matter. There is enrichment in L. pertusa of mono-unsaturated fatty acids and of delta15N relative to M. oculata. It is unclear whether this reflects different feeding strategies or assimilation/storage efficiencies of zooplankton tissue or different metabolism in the two coral species.