352 resultados para 595
Resumo:
The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10**-7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.
Resumo:
Palynological studies were carried out on Paleogene sections from Sites 693 and 696 of Ocean Drilling Project Leg 113 in the Weddell Sea region. Dinoflagellate cysts and sporomorphs were recovered at Site 696 (61°S, 42°W) indicating a middle Eocene to late Eocene/earliest Oligocene age for a glauconitic silt/sandstone. At Site 693 (70°S, 14°W) early Oligocene siliciclastic mud contains a low diversity palynoflora. In an upper Oligocene section (Site 693) only rare, reworked Mesozoic palynomorphs were encountered. Palynological data from Kerogen analyses, dinocysts, and sporomorphs are used to reconstruct the climatic change on the South Orkney microcontinent from the middle Eocene to the late Eocene/earliest Oligocene at Site 696 and the late early Oligocene/early late Oligocene time interval at Site 693 near the continental margin. The middle Eocene was a warm period in the Orkney region with good growing conditions for a warm temperate Nothofagus/conifer forest with an admixture of Proteaceae. Temperate surface water masses, which allowed the growth of a reasonably diverse dinocyst assemblage (ca. 15-20 species), persisted until the end of the Eocene at Site 696. Late early Oligocene sediments of Site 693 (Antarctic continental margin) contain only a low diversity dinocyst flora (two species). The major Cenozoic cooling event in the Weddell Sea region probably occurred at the Eocene/Oligocene boundary. A second dramatic climatic deterioration seems to have taken place during the late early/early late Oligocene, when dinocysts disappeared at the Dronning Maud Land margin area.
Resumo:
At Sites 566, 567, and 570 of Leg 84, ophiolitic serpentinite basement was covered by a sequence of serpentinitic mud that was formed by weathering of the serpentinites under sea- or pore-water conditions. Several mineralogical processes were observed: (1) The serpentinitic mud that consists mainly of chrysotile was formed from the lizardite component of the serpentinites by alteration. (2) Slightly trioctahedral smectites containing nonexpandable mica layers, trioctahedral smectites containing nonexpandable chlorite layers, and swelling chlorites were presumably formed from detrital chlorite and/or serpentine. (3) The occurrence of tremolite, chlorite, analcime, and talc can be attributed to reworking of gabbroic ophiolite rocks. (4) Dolomite, aragonite, and Mg-calcite, all authigenic, occur in the serpentinitic mud.
Resumo:
This chapter summarizes the principal results of drilling at Deep Sea Drilling Project (DSDP) Site 595, where the Ngendei Seismic Experiment and the emplacement of DARPA's Marine Seismic System (MSS) were carried out. Background and objectives for this work are presented in the introductory chapter to this volume. Interpretation of the seismic experiment and drilling results are presented in subsequent parts of this volume. The chapter also provides a detailed operational summary of the successful deployment of the MSS during Leg 91.
Resumo:
Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.
Resumo:
An aerial survey was conducted to estimate the abundance of belugas (Delphinapterus leucas) on their wintering ground in West Greenland in March-April 2006 and 2008. The survey was conducted as a double platform aerial line transect survey, and sampled approximately 17% of the total survey area of ca. 125 000 km**2. The abundance of belugas was 10 595 (95% confidence interval 4904-24 650). The largest abundance was found at the northern part of Store Hellefiske Bank, at the eastern edge of the Baffin Bay pack ice, a pattern similar to that found in eight systematic surveys conducted since 1981. A clear relationship between decreasing sea-ice cover and increasing offshore distance of beluga sightings was established from all previous surveys, suggesting that belugas expand their distribution westward as new areas on the banks of West Greenland open up earlier in spring with reduced sea-ice coverage or early annual ice recession. This is in contrast to the relatively confined distribution of belugas near the coast in limited open areas in the early 1980s, when sea-ice cover was greater. However, the effects of the changes in coastal availability of belugas can also be observed with the correlation between catches from the local Inuit hunt and sea-ice cover, where the catches increased significantly with increasing sea-ice coverage during the period 1954-2006. These results, based on nearly 30 years of dedicated survey effort, are among the first available evidence showing a shift in distribution of an Arctic cetacean in response to changes in sea-ice coverage.