278 resultados para 496
Resumo:
The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.
Resumo:
Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602-1, 13°32.71' N, 17°50.96'W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multi-parameter EM properties. One aeolian and two fluvial EMs were found. The aeolian EM is much coarser than the fluvial EMs and is associated with a lower goethite/hematite ratio, a higher relative concentration of magnetite and lower Al/Si and Fe/K ratios. Accumulation rates and grain sizes of the fluvial sediment appear to be primarily constrained by shore distance (i.e., sea-level fluctuations) and to a lesser extent by changes in hinterland precipitation. High dust fluxes occurred during the Last Glacial Maximum (LGM) and during Heinrich Stadials (HS) while the fluvial input remained unchanged. Our approach reveals that the LGM dust fluxes were ~7 times higher than today's. However, by far the highest dust accumulation occurred during HS 1 (~300 g m**-2 yr** -1), when dust fluxes were ~80 fold higher than today. Such numbers have not yet been reported for NW Africa, and emphasize strikingly different environmental conditions during HSs. They suggest that deflation rate and areal extent of HSs dust sources were much larger due to retreating vegetation covers. Beyond its regional and temporal scope, this study develops new, in principle, generally applicable strategies for multi-method end-member interpretation, validation and flux budgeting calibration.
Resumo:
Physical, chemical, and mineralogical properties of a set of surface sediment samples collected along the Chilean continental slope (21-44°S) are used to characterise present-day sedimentation patterns and sediment provenance on the Chilean margin. Despite the presence of several exceptional latitudinal gradients in relief, oceanography, tectonic evolution, volcanic activity and onshore geology, the present-day input of terrigenous sediments to the Chilean continental margin appears to be mainly controlled by precipitation gradients, and source-rock composition in the hinterland. General trends in grain size denote a southward decrease in median grain-size of the terrigenous (Corganic, CaCO3 and Opal-free) fraction, which is interpreted as a shift from aeolian to fluvial sedimentation. This interpretation is supported by previous observations of southward increasing bulk sedimentation rates. North-south trends in sediment bulk chemistry are best recognised in the iron (Fe) and titanium (Ti) vs. potassium (K) and aluminium (Al) ratios of the sediments that most likely reflect the contribution of source rocks from the Andean volcanic arc. These ratios are high in the northernmost part, abruptly decrease at 25°S, and then more or less constantly increase southwards to a maximum at ~40°S.
Resumo:
Insoluble residues of Late Cretaceous to Quaternary deep-sea samples from slope, trench, and oceanic plate sites south of Guatemala were examined, specifically for the distribution of clay minerals in the <2-µm fraction and of silt grains in the 20-63-µm fraction. Widespread "oceanic" particles (biogenic opal, rhyolitic glass) and their diagenetic products (smectite, clinoptilolite, heulandite) were distinguished from terrigenous material - illite, kaolinite, chlorite, plagioclase, quartz, and heavy minerals. The main results of this investigation are: (1) At Site 494 on the slope immediately adjacent to the trench, terrigenous supplies testify to a slope position of the whole sequence back to the Late Cretaceous. (2) At Site 495 on the Pacific Cocos Plate, "oceanic" and terrigenous sedimentation are clearly separated. Whereas the pelagic sedimentation prevailed in the early Miocene, terrigenous minerals appeared in the middle Miocene in the clay fraction, and in the early Pliocene in the coarse silt fraction. These terrigenous supplies are interpreted as having been transported by suspension clouds crossing the slope and even the trench. The alternative, however, an eolian transport, cannot be excluded.
(Table 1) Summary of physical properties on cores used for petrofabric analyses at DSDP Leg 67 Holes
Resumo:
The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.
Resumo:
Marine-derived amorphous organic matter dominates hemipelagic and trench sediments in and around the Middle America Trench. These sediments contain, on the average, 1% to 2% total organic carbon (TOC), with a maximum of 4.8%. Their organic facies and richness reflect (1) the small land area of Guatemala, which contributes small amounts of higher land plant remains, and (2) high levels of marine productivity and regionally low levels of dissolved oxygen, which encourage deposition and preservation of marine organic remains. These sediments have good potential for oil but are now immature. For this reason, gaseous hydrocarbons like the ethane identified in the deep parts of the section, as at Sites 496 and 497, are probably migrating from a mature section at depth. The pelagic sediments of the downgoing Cocos Plate are lean in organic carbon and have no petroleum potential
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.