279 resultados para 44-388A
Resumo:
The widely accepted age estimate for the onset of glaciation in the Northern Hemisphere ranges between 2 and 15 million years ago (Ma). However, recent studies indicate the date for glacial onset may be significantly older. We report the presence of ice-rafted debris (IRD) in ~44 to 30 Ma sediments from the Greenland Sea, evidence for glaciation in the North Atlantic during the Middle Eocene to Early Oligocene. Detailed sedimentological evidence indicates that glaciers extended to sea level in the region, allowing icebergs to be produced. IRD may have been sourced from tidewater glaciers, small ice caps, and/or a continental ice sheet.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
To better understand the composition, characteristics of helium diffusion, and size distribution of interplanetary dust particles (IDPs) responsible for the long-term retention of extraterrestrial 3He, we carried out leaching, stepped heating, and sieving experiments on pelagic clays that varied in age from 0.5 Ma to ~90 Myr. The leaching experiments suggest that the host phase(s) of 3He in geologically old sediments are neither organic matter nor refractory phases, such as diamond, graphite, Al2O3, and SiC, but are consistent with extraterrestrial silicates, Fe-Ni sulfides, and possibly magnetite. Stepped heating experiments demonstrate that the 3He release profiles from the magnetic and non-magnetic components of the pelagic clays are remarkably similar. Because helium diffusion is likely to be controlled by mineral chemistry and structure, the stepped heating results suggest a single carrier that may be magnetite, or more probably a phase associated with magnetite. Furthermore, the stepped outgassing experiments indicate that about 20% of the 3He will be lost through diffusion at seafloor temperatures after 50 Myrs, while sedimentary rocks exposed on the Earth's surface for the same amount of time would lose up to 60%. The absolute magnitude of the 3He loss is, however, likely to depend upon the 3He concentration profile within the IDPs, which is not well known. Contrary to previous suggestions that micrometeorites in the size range of 50-100 µm in diameter are responsible for the extraterrestrial 3He in geologically old sediments [Stuart, F.M., Harrop, P.J., Knott, S., Turner, G., 1999. Laser extraction of helium isotopes from Antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He flux to earth. Geochimica et Cosmochimica Acta, 63, 2653-2665, doi:10.1016/S0016-7037(99)00161-1], our sieving experiment demonstrates that at most 20% of the 3He is carried by particles greater than 50 µm in diameter. The size-distribution of the 3He-bearing particles implies that extraterrestrial 3He in sediments record the IDP flux rather than the micrometeorite flux.