203 resultados para 3-(2-aminoaryl)pyridinium moieties
Resumo:
The basaltic rocks of Hole 794D drilled during Leg 128 are strongly altered. Microprobe analyses and XRD spectra on small quantities of matter extracted from thin sections show that primary minerals and glassy zones of the groundmass are totally or partially replaced by clay minerals with chlorite/saponite mixed-layer composition whatever the rock sample considered. This mixed-layer was also identified in veins and vesicles where it crystallizes in spheroidal aggregates. The largest veins and vesicles are filled by a zoned deposit: the chlorite/saponite mixed-layer always occupies the central part and is rimmed by pure saponite. Calcite crystallizes in secondary fractures which crosscut the clayey veins and vesicles. Chemographic analysis based on the M+-4Si-3R2+ projection shows that the chemical composition of the saponite component in the mixed-layer is identical to that of the free saponite. This indicates that the clay mineral crystallization was controlled by the chemical composition of the alteration fluids. From petrographic evidence, it is suggested that both chlorite/saponite mixed-layer and free saponite belong to the same hydrothermal event and are produced by a temperature decrease. This is supported by the stable isotopic data. The isotopic data show very little variation: d18O saponite ranges from 13.1 per mil to 13.5 per mil, and dD saponite from -73.6 per mil to -70.0 per mil. d18O calcite varies from +19.7 per mil to +21.9 per mil vs SMOW and d13C from -3.2 per mil to +0.4 per mil vs. PDB. These values are consistent with seawater alteration of the basalt. The formation of saponite took place at 150°-180°C and the formation of calcite at about 65°C.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
Presently, the intermediate depths of the North Atlantic Ocean are occupied by a great lens of warm, saline water whose source is the Mediterranean Sea. This water flows both westward and northward, finally entering the Norwegian Sea where it may contribute to the formation of North Atlantic Deep Water. The Late Neogene history of Mediterranean Outflow in the Atlantic can be monitored at DSDP-IPOD Site 548 on the continental slope Southwest of Ireland using benthic Foraminifera oxygen isotope values. Isotopic data from 154 samples indicate that Mediterranean water was absent from the mid-depth North Atlantic from 3.4 to 3.2 Ma ago. However, at about 2.9 Ma ago the isotopic values at Site 548 diverge from those recorded from the deep North Atlantic and they can be interpreted to indicate the appearance of a new water mass, possibly Mediterranean water, in the North Atlantic water column. This appearance may be related to climatic changes that occurred around the Mediterranean Basin at about 2.9 Ma ago. The analysis of 189 samples for grain-size distributions shows that a significant increase in the silt-size fraction occurs at the same level that isotopic analysis indicates a change in bottom waters at Site 548. The grainsize data support the hypothesis that mid-depth water-mass changes occurred at about 2.9 Ma ago.
Resumo:
Phytoplankton biomass distribution (chlorophyll a, chl. a) and species composition (cell numbers) were investigated during three expeditions to the Kara Sea with "Akademik Boris Petrov" (BP) in 1997, 1999, and 2000. The distribution of biomass in the estuaries of Ob and Yenisei showed a similar range in 1997 (0.2 to 3.2 µg/l) and 2000 (0.4 to 3.5 ug/l); higher chl. a concentrations during these two years were found in Yenisei than in Ob. In 1999, phytoplankton biomass in the Ob and Ob Estuary was much higher than in 1997 and 2000, with maximum values above 10.0 ug chl. a/l. In 1999, biomass in Yenisei was lower (1.5 to ~5 ug/l) than in Ob but slightly higher than in 1997 and in 2000. During the expedition in 2000, the research area extended farther to the north, here, lowest phytoplankton biomass during all three years was found. Typical summer values for integrated chl.a biomass (surface to bottom) ranged between 6 and 20 mg m**-2. Strong differences existed in species composition in both rivers, the estuaries, and the open Kara Sea. In general, three or four different populations could be distinguished in surface waters: (1) freshwater diatoms together with bluegreen algae in both rivers, (2) centric and small pennate diatoms mainly brackish species in the estuaries, (3) north of 74°N, brackish/marine species dominated, i.e. in 1999 Thalassiosira cfpunctigera and Chaetoceros spp prevailed in the phytoplankton bloom in Ob. (4) At the northernmost, almost marine stations, a region with a more heterogeneous composition of unicellular plankton was encountered. We assume, we found different seasonal signals of phytoplankton development during 1997/2000 and 1999, respectively. However, the yearly fluctuation of freshwater runoff of both rivers seems to have the strongest influence on the timing and duration of phytoplankton blooms, species compositions and biomass standing stocks during summer.