461 resultados para 207-1258C
Resumo:
The Ocean Drilling Program (ODP) drilled at five sites in the western Atlantic Ocean during Leg 207. The objective of the drilling was to recover samples from the shallow buried Cretaceous and Paleocene sediments on the Demerara Rise off Suriname, South America. These sediments are being studied for a number of paleoceanographic studies of the low-latitude Atlantic off the coast of Suriname (this volume). For this report two sites, Sites 1257 and 1258, were selected for silicoflagellate study because shipboard results suggested these two sites as the only ones with siliceous microfossils of Paleocene-Eocene age. The Demarara Rise is a predominant submarine plateau located off the coast of Suriname and French Guyana. This plateau stretches 380 km along the coast and is 220 km wide. The depth to seafloor along the depth transect drilled during ODP Leg 207 ranges from 1000 to 4500 m, but most of the remainder of the plateau lies in shallow water of 700 m. Much of this area is covered with 2-3 km of sediments. The Demerara Rise is built on rifted Precambrian continental crust. The plateau was one of the last places to be in contact with West Africa during the opening of the Atlantic Ocean (see Shipboard Scientific Party, 2004). Site 1257 (9°27'N, 54°20'W; water depth = 2951 m) is located on a terrace on the northwestern Demerara Rise ~400 km from Suriname. This is the second deepest water depth location drilled during Leg 207. Sediments from this area range in age from Miocene to Albian. This area is part of the transform fault that separated from Central America and western Africa. Three holes were drilled at Site 1257. Site 1258 (9°26'N, 54°43'W; water depth = 3192 m) is located on the western slope of the Demerara Rise ~380 km north of Suriname. This site is the distal and deepest site of the paleoceanographic depth transect drilled across Demerara Rise during Leg 207. The area is located on a ridge of Paleocene sediments cropping out on the seafloor. Three holes were drilled at Site 1258, but only one is studied.
Resumo:
The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.
Resumo:
The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.
Resumo:
Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our ~87.8-92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.