810 resultados para 202-1241B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 202, Pleistocene calcareous nannofossils were recovered from several sites situated between 16°S and 8°N latitude. These sites are under the influence of coastal or equatorial upwelling and offer the opportunity to refine biostratigraphic patterns using alternative events from those used in "standard" zonations (Martini, 1971; Okada and Bukry, 1980, doi:10.1016/0377-8398(80)90016-X). Differences in the positions of the studied sites determine changes in sedimentation rates, which range from ~0.8 to 6 cm/k.y. (Shipboard Scientific Party, 2003, doi:10.2973/odp.proc.ir.202.101.2003). These differences are due to the proximity to the continent and to organic production.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site 1237 is located on Nazca Ridge ~140 km off the coast of Peru and thus within the offshore region of the Peru-Chile Current. A total of 83 samples were used to provide an initial radiolarian biostratigraphic framework for Site 1237; radiolarians are present to Sample 202-1237B-19H-2, 58-60 cm (186.45 meters composite depth [mcd]) and are of good to fair abundance and preservation. Site 1237 is influenced by both subtropical and northward-transported southern latitude waters, has 55 ash layers within the uppermost 166 m, and has minimal to gross reworking. Shipboard paleomagnetic results showed that the upper 200 m spanned the last 12 m.y., and in the upper 100 mcd, the paleomagnetic inclination pattern could be directly correlated to the geomagnetic polarity timescale (GPTS). Tropical biostratigraphy was used to establish the zonal boundaries for Site 1237, and the paleomagnetic and radiolarian stratigraphy were well correlated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic composition of nitrogen in pore water ammonium and in sedimentary organic matter (Norg) was measured at Sites 1234 and 1235 in order to evaluate the impact of long-term (>100 k.y.) diagenesis on d15N of preserved organic matter. At both sites, the average d15N of pore water ammonium and Norg are within 0.2 per mil to 0.4 per mil. The small difference is less than the analytical uncertainty, indicating that no significant isotopic fractionation is associated with decomposition of organic matter in these sediments. A mass balance for nitrogen was also computed, indicating that ~20% of the organic matter flux buried below 1.45 meters composite depth (mcd) is degraded between this depth and 40 mcd (Site 1235) to 60 mcd (Site 1234) depth. Two factors determine the absence of isotopic fractionation in these sediments: 1. A high degree of organic matter preservation due to rapid sediment accumulation rates at both sites. 2. The dominance of a marine component in the sedimentary organic matter (with only a small fraction contributed by a terrestrial component).