243 resultados para 1995_04052355 TM-83 4502804
Accompanying wind measurements for bottle data of cruise B6/83 during the MRI-LDEO cooperative study
Resumo:
We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.
Resumo:
From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.
Resumo:
We report measurements of magnetic intensity, inclination, initial susceptibility, Koenigsberger's ratio, saturation magnetization, and Curie temperatures of 68 basalt samples from the Leg 83 section of Hole 504B. As in the upper part of the hole, reversely magnetized units predominate. Intensities of natural remanent magnetization vary widely, but the range of variation is an order of magnitude less than in the upper part of the hole. This and the other properties measured indicate that the magnetic characteristics of basalts from Hole 504B have been strongly affected by hydrothermal alteration, particularly in the deeper, Leg 83 section. The alteration states of the magnetic samples were studies using Xray diffraction, electron microprobe, X-ray fluorescence, and ion coupled plasma. Our results suggest three alteration zones in Hole 504B: a low-temperature zone (274.5-890 m) and two high-temperature zones (890-1050 m and 1050- 1350 m), differing in the number of veins observed in the samples and presumably differing in the volumes of hydrothermal fluids which reacted with the basalts.
Resumo:
Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.