74 resultados para 1444


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strength and geometry of the Atlantic meridional overturning circulation is tightly coupled to climate on glacial-interglacial and millennial timescales, but has proved difficult to reconstruct, particularly for the Last Glacial Maximum. Today, the return flow from the northern North Atlantic to lower latitudes associated with the Atlantic meridional overturning circulation reaches down to approximately 4,000 m. In contrast, during the Last Glacial Maximum this return flow is thought to have occurred primarily at shallower depths. Measurements of sedimentary 231Pa/230Th have been used to reconstruct the strength of circulation in the North Atlantic Ocean, but the effects of biogenic silica on 231Pa/230Th-based estimates remain controversial. Here we use measurements of 231Pa/230Th ratios and biogenic silica in Holocene-aged Atlantic sediments and simulations with a two-dimensional scavenging model to demonstrate that the geometry and strength of the Atlantic meridional overturning circulation are the primary controls of 231Pa/230Th ratios in modern Atlantic sediments. For the glacial maximum, a simulation of Atlantic overturning with a shallow, but vigorous circulation and bulk water transport at around 2,000 m depth best matched observed glacial Atlantic 231Pa/230Th values. We estimate that the transport of intermediate water during the Last Glacial Maximum was at least as strong as deep water transport today.