65 resultados para 1378
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.
Resumo:
Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells (Parkes et al., 1994, doi:10.1038/371410a0; D'Hondt et al., 2004, doi:10.1126/science.1101155). Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (Parkes et al., 1994, doi:10.1038/371410a0) and 303 Pg (Whitman et al., 1998) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem (Schippers et al., doi:10.1038/nature03302; Inagaki et al., doi:10.1073/pnas.0511033103 ; Mauclaire et al., doi:10.1111/j.1472-4677.2004.00035.x; Biddle et al., doi:10.1073/pnas.0600035103). Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells (Biddle et al., doi:10.1073/pnas.0600035103; Sturt et al., 2004, doi:10.1002/rcm.1378), are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.