392 resultados para 127-795A


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of excellent upper Miocene through Quaternary diatomaceous sequences recovered at four sites during Leg 127 was examined for diatoms. The diagenetic transition from opal-A to opal-CT is a diachronic horizon from the uppermost part of the Denticulopsis katayamae Zone (8.5 Ma) at Hole 797B to the uppermost part of the Neodenticula kamtschatica Zone (5.73 Ma) at Hole 795A. The diatom zonation of Koizumi (1985) best divides the upper Miocene to Quaternary sequences above the opal-A/opal-CT boundary and also is useful to date carbonate concretions including diatoms below the boundary. Forty diatom datum levels were evaluated biostratigraphically based on the sediment accumulation rate curve, and several isochronous datum levels are newly proposed for the Japan Sea area. A warm-water current did not penetrated into the Japan Sea through the Tsushima strait during the late Miocene and Pliocene time, because subtropical warm-water diatoms are essentially not present in such sediment samples. The occurrences of diatom are cyclic throughout the Quaternary sediments and are affected by eustatic sea level changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over a broad region of the eastern Japan Sea, Neogene opaline diatomaceous sediments alter with depth to hard porcellanites and cherts composed of opal-CT and quartz. We examined the oxygen isotopic compositions of these diagenetic silica minerals at four widely spaced sites occupied during ODP Leg 127 in order to investigate the thermal history of the region. Formation temperatures computed from these isotopic data range from 22° to 68°C for opal-CT and from 44° to 92°C for diagenetic quartz, quite similar to temperature ranges estimated from the extrapolated modern gradients, 36°-43°C and 49°-64°C, respectively. At each site the isotopic temperature values cluster near the extrapolated ambient sediment temperatures. As a first approximation, the similarities suggest that the positions of the silica transformations in the basin are controlled by the present thermal regime. In detail, isotopic and ambient temperatures differ. If these differences are real, then they reflect variations in the thermal histories at these sites. At Sites 794 and 797 in the Yamato Basin, isotopic temperatures and gradients computed from these data are lower than or comparable to ambient temperatures and gradients. We suggest that the silica zones have roughly equilibrated with the modern gradients at these localities. At Site 795 in the Japan Basin, isotopic temperatures are also lower than ambient sediment temperatures at comparable depths, but the gradient computed from the isotopic temperatures is higher than the present measured gradient. For both scenarios to hold, the silica zones must have formed under initially high gradients during the early post-rift period at this locality. These zones were then rapidly buried and have yet to equilibrate with the modern lower gradient. At Site 796 on Okushiri Ridge, isotopic temperatures exceed present temperatures as expected for an area of recent uplift. The gradient computed from our isotopic data and the thickness of the opal-CT zone indicate a higher gradient than at present at this site, apparently reflecting higher heat fluxes during the early post-rift period or recent frictional heating from nearby reverse fault activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rock magnetic/paleoclimatic/diagenetic relationships of sediments spanning the last 0.78 Ma have been investigated using samples collected from light and dark layers recovered at ODP Sites 794 (Yamato Basin) and 795 (Japan Basin). Rock-magnetic parameters (K, Kfd, ARM, SIRM, S-ratio) are shown to reflect diagenetic processes and climate-related variations in the concentration, mineralogy and grain-size of the magnetic minerals contained within the sediments. The magnetic mineralogy is dominated by ferrimagnetic (magnetite-type) minerals with a small contribution made by hematite and iron sulphides such as pyrrhotite and/or greigite. Magnetic mineral concentration and grain size vary between light and dark layers with the former characterized by a higher magnetic content and a finer magnetic grain size. Magnetite dissolution, related to sulfate reduction due to bacterial degradation of organic matter, is the process responsible for the magnetic characteristics observed in the dark layers, testifying to the reducing conditions in the basin. Variations in the rock magnetic properties of the sediments are strongly correlated with global oxygen isotope fluctuations, with glacial stages characterized by a lower magnetic mineral content and a coarser magnetic grain size relative to interglacial stages. Major downcore changes in the magnetic properties observed at Site 794 can be related to changes in the oceanographic conditions of the basin associated with the flow of the warm Tsushima Current into the Japan Sea at about 0.35-0.40 Ma ago.