628 resultados para 120-750B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this preliminary biometric study of the calcareous nannofossil species Chiasmolithus expansus, Chiasmolithus oamaruensis, and Chiasmolithus altus from the upper middle Eocene to lower Oligocene of Sites 647 and 748, we document a complete gradation of forms among all three species. Chiasmolithus oamaruensis has significantly higher morphologic variance than the other species. The Chiasmolithus population at each site changes from C. expansus to C. oamaruensis and then to C. altus. This may not reflect a true evolutionary sequence because a major reversal in shape change of the central cross-bar structure accompanies this sequence, and because C. altus is morphologically closer to C. expansus than it is to C. oamaruensis. The change in the width of the cross-bar structure is primarily a result of changes in the alignment of the central connecting bar, rather than of changes in the cross-bar angle. At Site 748, two fluctuations in morphology produce sample populations intermediate between all three species. In addition, reported stratigraphic and paleogeographic occurrences of C. oamaruensis and C. altus show different latitudinal distributions. These morphological and distributional patterns may be explained by a continuous morphologic gradient between C. oamaruensis and C. altus, with C. oamaruensis occurring more commonly in cool-water paleoenvironments, and C. altus occurring more commonly in cold-water paleoenvironments. Thus, paleoenvironmental fluctuations at Site 748 may be the cause of the morphologic fluctuations in Chiasmolithus. This hypothesis can be tested against previously proposed evolutionary models by more detailed sampling of sections along a latitudinal transect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the primary objectives of Leg 120 was to obtain a high-resolution Neogene stratigraphic section from the Kerguelen Plateau. Site 751, located in the central part of the Raggatt Basin on the Southern Kerguelen Plateau in 1633.8 m of water (57°43.56'S; 79°48.89'E), was selected as the dedicated Neogene site for this objective. High-resolution sampling at Site 751 was used to delineate in detail the Neogene ice-rafted debris (IRD) occurrences on the Kerguelen Plateau. The oldest IRD found at Site 751 was approximately 9.9 Ma, and it was not until approximately 8.5 Ma that significant concentrations of IRD were detected. The first major IRD event at this site occurred in the uppermost Miocene between 6.0 and 5.5 Ma. During this time period, a general climatic cooling and glacial expansion occurred on Antarctica. The late Miocene IRD event was followed by a continuous episode of elevated IRD deposition in the lowermost Pliocene between 4.5 and 4.1 Ma. The 0.4-m.y. duration and the timing of the early Pliocene IRD event on the Kerguelen Plateau corresponds with IRD fluxes observed on the Falkland Plateau and in the Weddell Abyssal Plain. This correspondence of data indicates that a major global climatic event occurred during the early Pliocene. The East Antarctic Ice Sheet may have experienced deglaciation between 4.5 and 4.1 Ma and, as a result, released large volumes of sediment-laden ice into the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tests and improves on previously published early and middle Miocene 87Sr/86Sr marine correlations, presents Sr isotopic age correlations for this interval using the new timescale of Cande and Kent [1992 doi:10.1029/92JB01202], and evaluates Sr isotopic changes against an inferred glacioeustatic proxy. We generated a latest Oligocene to early late Miocene 87Sr/86Sr isotope record from Ocean Drilling Program (ODP) Hole 747A; this site provides an excellent magnetostratigraphic record during most of this interval for independent age estimates, very good foraminiferal preservation, and excellent core recovery. Comparisons of new 87Sr/86Sr data from Hole 747A with previously published data from Deep Sea Drilling Project (DSDP) Sites 608 [Miller et al., 1991 doi:10.1029/90PA01941] and 588 [Hodell et al., 1991 doi:10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2] yield the following results: (1) confirmation and refinement of the early Miocene Sr isotope changes, (2) improved definition of the timing of the changes in slope of 87Sr/86Sr near 15.4 Ma and 22.8 Ma, (3) improved Sr isotopic age resolution for the middle Miocene with resolution as good as +/- 0.7 m.y., and (4) identification of an inflection in the Sr isotope record at 28.0 Ma based on the combined records from DSDP Site 522 [Miller et al., 1988 doi:10.1029/PA003i002p00223] and ODP Hole 747A. We have been unable to determine the cause of middle Miocene offset between Site 588 and Hole 747A data, although we believe it may be attributed to problems in the age assignments for Hole 588A for the interval ~14-11 Ma and Site 747 for the interval 11-8 Ma. Because Hole 747A results provide a better chronology than Site 588 for most of the Miocene and a better middle Miocene Sr isotope record than Site 608, we propose that Hole 747A serves as the best reference section for Miocene 87Sr/86Sr variations from ca. 23 to 11 Ma. Using 87Sr/86Sr data from Sites 522, 608, and 747A, we relate late Eocene to early Miocene inflections in the 87Sr/86Sr isotope record to oxygen isotope increases and decreases inferred to represent glacioeustatic events. The decreases (deglaciations) observed in the ?18O record apparently lead the 87Sr/86Sr inflections by 1 to 1.5 m.y.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (d13C) was temporarily reduced for ~100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum d18O values and reduction in test size-d13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera.