135 resultados para 1146


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sites 1146 and 1148 of Ocean Drilling Program Leg 184, in the South China Sea (SCS), comprise long sediment sections with a time span from the early Oligocene to the Pleistocene. Calcareous nannofossils from these two sites were biostratigraphically studied. We recognized 53 early Oligocene to Pleistocene events that are commonly found in open sea areas and can therefore be correlated within a large geographic range. This study also revealed that a few conventionally used nannofossil events are not suitable for the SCS, and further evaluation is needed. The lower Oligocene to Pleistocene sequences recovered at Sites 1146 and 1148 were subdivided into the 4 Paleogene zones and 21 Neogene to Quaternary zones of Martini, in correlation with the Paleogene to Quaternary zones of Okada and Bukry. This provided a lower Oligocene through Pleistocene nannofossil biostratigraphic framework. A significant unconformity was recognized in the Oligocene-Miocene transition, in which the upper part of Oligocene Zone NP25 and lower part of Miocene Zone NN1 were missing. The time span of the unconformity was estimated to be ~1 m.y. Very high sedimentation rates were seen in the Oligocene, relative low values were seen in the Miocene, and the highest values were seen in the Pleistocene, which was believed to be the result of tectonic and sedimentation history of the SCS.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and 17863_TC values ranging from -28.7? to +2.3?. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (d13C_TOC: -28.9? to -21.5?) and variations in d13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important (as yet unidentified) reservoir for dissolved organic carbon (DOC) from seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphy of Miocene-age sediment samples recovered from Ocean Drilling Program Sites 1143 and 1146, South China Sea, is presented. The preservation of the planktonic foraminifers recovered from both sites varies widely, from poor to very good. The volume of biogenic sediment in the >63-µm size fraction also varies considerably, with many samples being dominated by mud. In comparison to shipboard biostratigraphy, based on core catcher analyses with a depth resolution of ~10 m, we analyzed samples from the two stratigraphic columns every 2-3 m (~45- to 93-k.y. resolution). The placement of planktonic foraminifer zonal boundaries was made at a resolution of ~1.5 m at Site 1146 and ~3.0 m at Site 1143. The higher resolution has resulted in significant changes in biostratigraphic zonal boundary locations compared to shipboard results. For the time interval of 5.54-10.49 Ma, the changes in zonation reveal similar age-depth models at both sites, with three segments of changing sedimentation rate through the upper Miocene, though the differences in sedimentation rates at Site 1146 are subtler than those at Site 1143. The boundary between lithologic Units II and III at Site 1146 corresponds to a sharp change in sedimentation rate (58 to 21 m/m.y.) at 15.1 Ma (the first occurrence of Orbulina suturalis). At this site, the interval from 16.4 to 15.1 Ma is characterized by very high mass accumulation rates in the noncarbonate fraction. Above this interval the carbonate fraction becomes increasingly important in the sediment flux to the South China Sea. At Site 1143, sedimentation rates increase from 8 to 99 m/m.y. at 8.6 Ma. This corresponds to a dramatic increase in both carbonate and noncarbonate mass accumulation rates at the site, but no change in lithology.