139 resultados para (VPDB)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30 per mil to -40 per mil for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood, quantify past methane sources and fluxes from terrestrial and potentially also marine sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite North Atlantic record from DSDP Site 609 and IODP Site U1308 spans the past 300,000 years and shows that variability within the penultimate glaciation differed substantially from that of the surrounding two glaciations. Hematite stained grains exhibit similar repetitive down-core variations within the Marine Isotope Stage (MIS) 8 and 4-2 intervals, but little cyclic variability within the MIS 6 section. There is also no petrologic evidence, in terms of detrital carbonate-rich (Heinrich) layers, for surging of the Laurentide Ice Sheet through the Hudson Strait during MIS 6. Rather, very high background concentration of ice-rafted debris (IRD) indicates near continuous glacial meltwater input that likely increased thermohaline disruption sensitivity to relatively weak forcing events, such as expanded sea ice over deepwater formation sites. Altered (sub)tropical precipitation patterns and Antarctic warming during high orbital precession and low 65° N summer insolation appears related to high abundance of Icelandic glass shards and southward sea ice expansion. Differing European and North American ice sheet configurations, perhaps aided by larger variations in eccentricity leading to cooler summers, may have contributed to the relative stability of the Laurentide Ice Sheet in the Hudson Strait region during MIS 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our understanding of the centennial-scale variability of the Brazil Current (BC) during the late Holocene is elusive because of the lack of appropriate records. Here we used the Mg/Ca and oxygen isotopic composition of planktonic foraminifera from two marine sediment cores collected at 27° S and 33° S off southeastern South America to assess the late Holocene variability in the upper water column of the BC. Our results show in phase fluctuations of up to 3 °C in sea surface temperatures (SST), and 0.8 per mil in oxygen isotopic composition of surface sea water, a proxy for relative sea surface salinity (SSS). Time-series analyses of our records indicate a cyclicity with a period of ca. 730 yr. We suggest that the observed cyclicity reflects variability in the strength of the BC associated to changes in the Atlantic meridional overturning circulation (AMOC). Positive (negative) SST and SSS anomalies are related to a strong (weak) BC and a weak (strong) AMOC. Moreover, periods of peak strength in the BC occur synchronously to a weak North Brazil Current, negative SST anomalies in the high latitudes of the North Atlantic, and positive (negative) precipitation anomalies over southeastern South America (equatorial Africa), further corroborating our hypothesis. This study shows a tight coupling between the variability of the BC and the high latitudes of the North Atlantic mediated by the AMOC even under late Holocene boundary conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North Atlantic Ocean underwent an abrupt temperature increase of 9 °C at high latitudes within a couple of decades during the transition from Heinrich event 1 (H1) to the Bølling warm event, but the mechanism responsible for this warming remains uncertain. Here we address this issue, presenting high-resolution last deglaciation planktic and benthic foraminiferal records of temperature and oxygen isotopic composition of seawater (d18OSW) for the subtropical South Atlantic. We identify a warming of ~6.5 °C and an increase in d18Osw of 1.2 per mil at the permanent thermocline during the transition, and a simultaneous warming of ~3.5 °C with no significant change in d18Osw at intermediate depths. Most of the warming can be explained by tilting the South Atlantic east-west isopycnals from a flattened toward a steepened position associated with a collapsed (H1) and strong (Bølling) Atlantic meridional overturning circulation (AMOC). However, this zonal seesaw explains an increase of just 0.3 per mil in permanent thermocline d18Osw. Considering that d18Osw at the South Atlantic permanent thermocline is strongly influenced by the inflow of salty Indian Ocean upper waters, we suggest that a strengthening in the Agulhas leakage took place at the transition from H1 to the Bølling, and was responsible for the change in d18Osw recorded in our site. Our records high-light the important role played by Indian-Atlantic interocean exchange as the trigger for the resumption of the AMOC and the Bølling warm event. of the AMOC and the Bølling warm event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate organic matter (POM) derived from permafrost soils and transported by the Lena River represents a quantitatively important terrestrial carbon pool exported to Laptev Sea sediments (next to POM derived from coastal erosion). Its fate in a future warming Arctic, i.e., its remobilization and remineralization after permafrost thawing as well as its transport pathways to and sequestration in marine sediments, is currently under debate. We present one of the first radiocarbon (14C) data sets for surface water POM within the Lena Delta sampled in the summers of 2009 - 2010 and spring 2011 (n = 30 samples). The bulk D14C values varied from -55 to -391 per mil translating into 14C ages of 395 to 3920 years BP. We further estimated the fraction of soil-derived POM to our samples based on (1) particulate organic carbon to particulate nitrogen ratios (POC : PN) and (2) on the stable carbon isotope (d13C) composition of our samples. Assuming that this phytoplankton POM has a modern 14C concentration, we inferred the 14C concentrations of the soil-derived POM fractions. The results ranged from -322 to -884 per mil (i.e., 3060 to 17 250 14C years BP) for the POC : PN-based scenario and from -261 to -944 per mil (i.e., 2370 to 23 100 14C years BP) for the d13C-based scenario. Despite the limitations of our approach, the estimated D14C values of the soil-derived POM fractions seem to reflect the heterogeneous 14C concentrations of the Lena River catchment soils covering a range from Holocene to Pleistocene ages better than the bulk POM D14C values. We further used a dual-carbon-isotope three-end-member mixing model to distinguish between POM contributions from Holocene soils and Pleistocene Ice Complex (IC) deposits to our soil-derived POM fraction. IC contributions are comparatively low (mean of 0.14) compared to Holocene soils (mean of 0.32) and riverine phytoplankton (mean of 0.55), which could be explained with the restricted spatial distribution of IC deposits within the Lena catchment. Based on our newly calculated soil-derived POM D14C values, we propose an isotopic range for the riverine soil-derived POM end member with D14C of -495 ± 153 per mil deduced from our d13C-based binary mixing model and d13C of -26.6 ± 1 per mil deduced from our data of Lena Delta soils and literature values. These estimates can help to improve the dual-carbon-isotope simulations used to quantify contributions from riverine soil POM, Pleistocene IC POM from coastal erosion, and marine POM in Siberian shelf sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541 Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation. The strongly negative d13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative d13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive d13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions. Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive d13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean. Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indian Ocean is an important component of the global thermohaline circulation system, as its western boundary currents feed the Agulhas Current, an integral part of the Atlantic meridional overturning circulation. However, Indian Ocean intermediate to deep-water variability on glacial-interglacial timescales is still a matter of debate. Here we provide stable carbon and oxygen isotopes and sediment elemental compositions of a sediment core from the edge of the Somali Basin. We demonstrate that throughout the past 600 kyr the intermediate western Indian Ocean was primarily bathed by Southern Ocean sourced Upper Circumpolar Deep Water (UCDW). This Southern Ocean sourced water mass enters the Somali Basin via the Amirante Passage or the Mozambique Channel and represents a downstream equivalent of South Atlantic UCDW. We cannot clearly account for the shortterm passage of Red Sea Water (RSW) at 1500 m water depth along the African continental margin, as previously suggested, on glacial-interglacial timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain-size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea-level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea-level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea-level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea-level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.