908 resultados para oxygen isotopes
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Oxygen and hydrogen isotopes measured on water bottle samples during EUROFLEETS cruise Iberia-Forams
Resumo:
We established a composite oxygen- and carbon-isotope stratigraphy for the Pliocene in the central South Atlantic. Monospecific samples of benthic and planktonic foraminifers from pelagic sediments from DSDP Sites 519, 521, 522, and 523 were analyzed isotopically. The resulting benthic oxygen-isotope stratigraphy allowed three paleoclimatic periods in the Pliocene to be distinguished. During the early Pliocene (5.2-3.3 Ma), low-amplitude climatic changes prevailed in a world that was less glaciated than during the Pleistocene. A net increase in global ice volume is documented in a 0.5 permil positive shift in the average 18O composition of the benthic foraminifers at 3.2 Ma. The middle Pliocene (3.3-2.5 Ma) is not only characterized by a more widespread glaciation of the Southern and Northern hemispheres but also by more drastic isotopic differences between glacial and interglacial times. A minor shift in the average 18O composition of the benthic foraminifers marks the beginning of the late Pliocene-early Pleistocene climatic period (2.5-1.1 Ma). Alternating cold and warm climate is documented in both the oxygen-isotope record and in the pelagic sediments. During cold periods, sediments with a lower CaCO3 content indicate more corrosive bottom-water conditions. More negative 13C signals in the benthic foraminifers from these sediments suggest that the Antarctic Bottom Water current was intensified in glacial times. The oxygen-isotope composition of the measured planktonic foraminifers suggests that the surface water in this part of the South Atlantic remained relatively warm during the growth of the Pliocene glaciers.