724 resultados para Coiba Ridge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron-manganese nodules from the ocean floor have been extensively studied. But, because of the fine grain size of the particles of the nodules, structural identification by X-ray and electron diffraction techniques is difficult and the mineralogy of the iron oxide phase has not been well characterized. The observation of the Mössbauer spectrum-in which each nucleus absorbs gamma-rays independently-is not limited by particle size in the same way as is the observation of Bragg peaks in diffraction measurements, in which radiation must be scattered coherently from a large number of atoms. The magnetic hyperfine splitting in the Mössbauer spectrum of magnetic materials is affected, however, when the particles are so small that they become superparamagnetic. We describe here an investigation using the 57Fe Mössbauer effect of two iron-manganese nodules in which the iron oxide phase could not be detected by X-ray or electron diffraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clay mineral relative abundances in approximately 450 samples from cores recovered during ODP Leg 117 in the Arabian Sea have been used to examine the paleoclimatic, paleoenvironmental, and tectonic histories of the Indus Fan, Owen Ridge, Oman margin, and adjacent continental source regions. Geographic variations in the relative abundances of minerals and correlations with depositional processes support previous interpretations that smectite has been supplied from weathering of the Deccan Traps; illite and chlorite have been supplied either from the Himalayas via marine transport or from the Iran-Makran region by winds; and palygorskite has been supplied from the Arabian peninsula and Somalia by winds. Pleistocene sediments of the Indus Fan record two modes of deposition: turbidites supplied from the Indus drainage and dominated by illite and chlorite, and pelagic carbonates containing smectites and wind-transported palygorskite. Local and regional causes for shifts between these depositional processes cannot be demonstrated conclusively with the data available, but sea-level fluctuations probably exerted a significant control on the rate of turbidite influx. Lower Miocene sediments on the Owen Ridge are also turbidites supplied by the Indus drainage; in the middle Miocene, a shift to pelagic carbonates records the uplift of the Owen Ridge, and is accompanied by the increased relative importance of wind-transported palygorskite. Associations of palygorskite and biosiliceous components in middle to upper Miocene sediments are interpreted to record vigorous monsoonal circulation and accompanying upwelling-produced biological productivity. Mineralogic and geochemical data indicate that light/dark color alternations in upper Miocene sediments on the Owen Ridge record climatic fluctuations, but the climatic significance of similar alternations in Pliocene-Pleistocene sediments is unclear. Palygorskite is the dominant clay on the Oman margin, reflecting proximity to its source areas. On the Oman margin, clay mineral relative abundances are most variable at structurally complex sites, indicating that local depositional settings have been influenced by their tectonic histories since the Miocene.