877 resultados para Antarctic Ocean
Resumo:
One of the main sources of anthropogenic radionuclides in the ocean is the global fallout resulting from the nuclear tests that had been conducted by the United States, the former Soviet Union, and other countries between 1945 and 1990 mainly in the Northern Hemisphere. The most extensive fallout was observed in the middle latitudes of the Northern Hemisphere in 1963 immediately after the nuclear tests of 1961-1962 conducted by the United States and the Soviet Union. In 2006-2009, under the auspices of an agreement between the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences and the National Center of Antarctic and Marine Research of the Ministry of Earth Sciences of India, cooperative geological and geochemical investigations were organized in several regions of the Indian Ocean. During these expeditions, the spatial distribution of anthropogenic radionuclides was investigated in the water of the Indian Ocean. The main results of these investigations are reported in this paper.
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
Intraspecific differences in the diets of many species of pinnipeds are to be expected in view of the great differences in morphology, life history and foraging behaviour between the sexes of many species. We examined the diet of the Antarctic fur seal population at Bouvetøya, Southern Ocean, to assess intersexual differences. This was made possible by the analysis of prey remains extracted from scats and regurgitations collected in areas used primarily by one or the other sex. The results indicate that both males and females feed primarily on Antarctic krill Euphausia superba with several species of fish and squid being taken, likely opportunistically given their prevalence. Significant differences were identified in the frequency of occurrence of otoliths in scats and the percentage numerical abundance of the major fish prey species in the diet. Adult males ate a smaller quantity of fish overall, but ate significantly more of the larger fish species. The greater diving capabilities of males and the fact that they are not limited in the extent of their foraging area by having to return regularly to feed dependant offspring may play a role in the differences found between the diets of males and females. Additionally, females might be more selective, favouring myctophids because they are richer in energy than krill. The absence of major differences in the diet between the sexes at this location is likely due to the high overall abundance of prey at Bouvetøya.
Resumo:
We report on observations of dense shelf water overflows and Antarctic Bottom Water (AABW) formation along the continental margin of the Adelie and George V Land coast between 140°E and 149°E. Vertical sections and bottom layer water mass properties sampled during two RVIB Nathaniel B Palmer hydrographic surveys (NBP00-08, December 2000/January 2001 and NBP04-08, October 2004) describe the spreading of cold, dense shelf water on the continental slope and rise from two independent source regions. The primary source region is the Adelie Depression, exporting high-salinity dense shelf water through the Adelie Sill at 143°E. An additional eastern source region of lower-salinity dense shelf water from the Mertz Depression is identified for the first time from bottom layer properties northwest of the Mertz Sill and Mertz Bank (146°E-148°E) that extend as far as the Buffon Channel (144.75°E) in summer. Regional analysis of satellite-derived ice production estimates over the entire region from 1992 to 2005 suggests that up to 40% of the total ice production for the region occurs over the Mertz Depression and therefore this area is likely to make a significant contribution to the total dense shelf water export. Concurrent time series from bottom-mounted Microcats and ADCP instruments from the Mertz Polynya Experiment (April 1998 to May 1999) near the Adelie Sill and on the upper continental slope (1150 m) and lower continental rise (3250 m) to the north describe the seasonal variability in downslope events and their interaction with the ambient water masses. The critical density for shelf water to produce AABW is examined and found to be 27.85 kg/m**3 from the Adelie Depression and as low as 27.80 kg/m**3 from the Mertz Depression. This study suggests previous dense shelf water export estimates based on the flow through the Adelie Sill alone are conservative and that other regions around East Antarctica with similar ice production to the Mertz Depression could be contributing to the total AABW in the Australian-Antarctic Basin.
Resumo:
Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.
Resumo:
Stable isotopic data of calcareous nannofossil, monogeneric and monospecific planktic and benthic foraminifera from five Indian Ocean DSDP sites (212, 217, 220, 237, and 253), leads to the following paleoclimatic and paleoceanographic conclusions: - The latest Cretaceous oxygen isotopic record implies a cooling (3-4°C) during the Maastrichtian. At the Cretaceous/Tertiary boundary only a minor warming (about 2°C) has been recorded. The parallel delta13C decrease of more than 1? indicates a significant decrease in productivity. - During the latest Paleocene a positive delta13C excursion was detected in Sites 217 and 237. This transient enrichment in delta13C may be due to productivity changes on continents and/or a change in the storage rate of organic matter in marginal basins or shelf areas. - The most striking feature in the oxygen isotopic record is noted at the Early/Middle Eocene transition. The shift towards more positive values (which were probably enhanced to a certain extent by a preceding diagenetic alteration) delineates a dramatic climatic deterioration at high and mid latitudes during the earlier Tertiary. - Near the Eocene/Oligocene boundary a cooling is evident within the latest Eocene interval. During the earliest Oligocene time a hiatus at Sites 217 and 253 partially obscures the climatic record. - Several climatic fluctuations have been noted during the Oligocene: a cooling at the base of Zone NP 23, a warming at the top of Zone NP 23 through NP 24, and a cooling during Zone NP 25. - The Miocene oxygen isotopic record is dominated by changes in surface and bottom water environments during Zone NN5. The decreasing and then increasing delta18O values, together with the subsequent steepening of the vertical delta18O gradient, point towards major climatic instabilities. These events coincide with the Mid-Miocene build-up of Antarctic ice-sheets. During the latest Miocene to the earliest Pliocene the delta18O record of planktic foraminifera indicates a significant warming of the Indian Ocean at mid-latitudes. - The delta13C record during the Oligocene and Miocene reveals several cycles (delta13C enrichments: NP 24, NN2, NN5, NN9, and base NN 11) which are most likely related to changes in storage rates of organic matter and biological productivity due to climatic changes and transgression/regression cycles. In addition, changes in the circulation patterns may also have influenced the carbon isotopic record.
Resumo:
Extract from related chapter 5.5.2 in reference: The Orca Seamount was discovered in the central basin of the Bransfield Strait around the posit 62°26'S and 58°24'W on the west side of the Antarctic Peninsula, the most western area of the south polar continent. Through the discovery was made known in 1987, it was only during three bathymetric surveys with high resolution fan echosounders between 1993 and 1995 that the character and complete shape of a remarkable volcano seamount became evident. The data acquisition and processing revealed a spectacular crater of 350 m depth. The relative hight of this 3 km wide "caldera" rim is 550 m with a basal diameter of the seamount cone of 11 km. Its flanks are about 15° steep but in some places the slope reaches up to 36°. The nearly circular shape of the Orca edifice spreads outh with several pronounced spurs, trending parallel to the basin axis in a northeast-southwest direction. The Bransfield Strait is a trough-shaped basin of 400 km length and 2 km depth between the South Shetland Island Arc and the Antarctic Peninsula, formed by rifting behind the islands. The separation of the South Shetland island chain from the peninsula began possibly several million years ago. The active rifting is still going on however, and has caused recent earthquakes and volcanism along the Bransfield Strait. The Strait hosts a chain of submerged seamounts of volcanic origin with the presently inactive Ora Seamount as the most spectacular one. The South Shelfand Island owe their existence to a subduction related volcanism which is perhaps 5-10 times older than the age of Orca and the other seamounts along the central basin of the Bransfield Strait.