975 resultados para Core drilling.


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The petrography, mineralogy and geochemistry of volcanic and subvolcanic rocks in CRP-3 core have been examined in detail in order to characterise and to compare them with volcanic and subvolcanic rocks cropping out in the Victoria Land area, and to define the clast provenance or to establish possible volcanic activity coeval with deposition. Clasts with sizes ranging from granule to boulder show geochemical and mineralogical features comparable with those of Ferrar Supergroup rocks. They display a subalkaline affinity and compositions ranging from basalts to dacite. Three different petrographic groups with distinct textural and grain size features (subophitic, intergranular-intersertal, and glassy-hyalopilitic) are recognised and are related to the emplacement/cooling mechanism. In the sand to silt fraction, the few glass shards that have been recognised are strongly altered: however chemical analyses show they have subalkalic magmatic affinity. Mineral compositions of the abundant free clinopyroxene grains found in the core, are less affected by alteration processes, and indicate an origin from subalkaline magmas. This excludes the presence, during the deposition of CRP-3 rocks of alkaline volcanic activity comparable with the McMurdo Volcanic Group. Strong alteration of the magmatic body intruded the Beacon sandstones obliterates the original mineral assemblage. Geochemical investigations confirm that intrusion is part of the Ferar Large Igneous Province.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cape Roberts Project drill core 2/2A was obtained from Roberts Ridge, a sea-floor high located at 77° S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 624 m long and includes strata dated as being Quaternary, Pliocene, Miocene and Oligocene in age. The core includes twelve facies commonly occurring in associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf with minor iceberg influence, outer shelf-inner shelf-nearshore to shoreface under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. Changes in palaeoenvironmental interpretations up the core are used to estimate relative glacial proximity to the site through time. These inferred glacial fluctuations are then compared with the global eustatic sea level and d18O curves to evaluate the potential of glacial fluctuations on Antarctica influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences especially in possible number (and perhaps magnitude) of glacial fluctuations that require further evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tentative age scale (EDC1) for the last 45 kyr is established for the new 788 m EPICA Dome C ice core using a simple ice flow model. The age of volcanic eruptions, the end of the Younger Dryas event, and the estimated depth and age of elevated 10Be, about 41 kyr ago were used to calibrate the model parameters. The uncertainty of EDC1 is estimated to ±10 yr for 0 to 700 yr BP, up to ±200 yr back to 10 kyr BP, and up to ±2 kyr back to 41 kyr BP. The age of the air in the bubbles is calculated with a firn densification model. In the Holocene the air is about 2000 yr younger than the ice and about 5500 yr during the last glacial maximum.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: