721 resultados para 178-1102D
Resumo:
Sediment drifts on the continental rise are located proximal to the western side of the Antarctic Peninsula and recorded changes in glacial volume and thermal regime over the last ca. 15 m.y. At Ocean Drilling Program (ODP) Site 1101 (Leg 178), which recovered sediments back to 3.1 Ma, glacial-interglacial cyclicity was identified based on the biogenic component and sedimentary structures observed in X-radiographs, magnetic susceptibility and lithofacies descriptions. Glacial intervals are dominated by fine-grained laminated mud and interglacial units consist of bioturbated muds enriched in biogenic components. From 2.2 to 0.76 Ma, planktonic foraminifera and calcareous nannofossils dominate in the interglacials suggesting a shift of the Antarctic Polar Front (APF) to the south near the drifts. Prior to 2.2 Ma, cyclicity cannot be identified and diatoms dominate the biogenic component and high percent opal suggests warmer conditions south of the APF and reduced sea ice over the drifts. Analyses of the coarse-grained terrigenous fraction (pebbles and coarse sand) from Sites 1096 and 1101 record glaciers at sea-level releasing iceberg-rafted debris (IRD) throughout the last 3.1 m.y. Analyses of quartz sand grains in IRD with the scanning electron microscope (SEM) show an abrupt change in the frequency of occurrence of microtextures at ~1.35 Ma. During the Late Pliocene to Early Pleistocene, the population of quartz grains included completely weathered grains and a low frequency of crushing and abrasion, suggesting that glaciers were small and did not inundate the topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass through the glacier unmodified. During glacial periods from 1.35-0.76 Ma, glaciers expanded in size. The IRD flux was very high and dropstones have diverse lithologies. Conditions resembling those at the Last Glacial Maximum (LGM) have been episodically present on the Antarctic Peninsula since ~0.76 Ma. Quartz sand grains show high relief, fracture and abrasion common under thick ice and the IRD flux is low with a more restricted range of dropstone lithologies.
Resumo:
Thick Holocene sedimentary sections (>45 m) cored in the Palmer Deep by the United States Antarctic Program (USAP) and during Ocean Drilling Program (ODP) Leg 178 provide the first opportunity to examine past geomagnetic field behavior at high southern latitudes. After removal of a low-coercivity drilling overprint the sediments display a stable, single-component remanent magnetization. Two short cores that recovered the uppermost 2.6 m of sediment have inclinations that fluctuate about the present day inclination (-57°) measured at Faraday Station, and several features with wavelengths of 10 to 20 cm appear to be correlative. However, shipboard measurements of inclination fluctuations on split-core samples from three holes drilled at ODP Site 1098 do not correlate well with each other, even though the intensity and susceptibility data correlate very well and the overall mean inclination for cores from each hole is consistent with the expected geocentric axial dipole (GAD) inclination. The correlation is improved dramatically by using inclinations measured on u-channels taken from the pristine center of a split core. Consequently, the anomalous directions and the resulting poor between-hole correlation of inclinations obtained from shipboard data can be attributed to coring-induced deformation, which is common on the outer edge of ODP piston cores, and/or measurement artifacts in the split-core data. Our preferred inclination record is thus derived from u-channel results. The upper ~25 m represents continuous sedimentation over the past 9000 yr, with an average sedimentation rate exceeding 250 cm/kyr (0.25 cm/yr). Given that remanence measurements on u-channels average over an interval <7 cm long, we obtained independent measurements of the paleo-geomagnetic field that average over only ~30 yr. This high-resolution record is characterized by an inclination that fluctuates within +/-15° of the current GAD inclination.
Resumo:
Fine-fraction (<63 µm) grain-size analyses of 530 samples from Holes 1095A, 1095B, and 1095D allow assessment of the downhole grain-size distribution at Drift 7. A variety of data processing methods, statistical treatment, and display techniques were used to describe this data set. The downhole fine-fraction grain-size distribution documents significant variations in the average grain-size composition and its cyclic pattern, revealed in five prominent intervals: (1) between 0 and 40 meters composite depth (mcd) (0 and 1.3 Ma), (2) between 40 and 80 mcd (1.3 and 2.4 Ma), (3) between 80 and 220 mcd (2.4 and 6 Ma), (4) between 220 and 360 mcd, and (5) below 360 mcd (prior to 8.1 Ma). In an approach designed to characterize depositional processes at Drift 7, we used statistical parameters determined by the method of moments for the sortable silt fraction to distinguish groups in the grainsize data set. We found three distinct grain-size populations and used these for a tentative environmental interpretation. Population 1 is related to a process in which glacially eroded shelf material was redeposited by turbidites with an ice-rafted debris influence. Population 2 is composed of interglacial turbidites. Population 3 is connected to depositional sequence tops linked to bioturbated sections that, in turn, are influenced by contourite currents and pelagic background sedimentation.
Resumo:
High-resolution records of sedimentary proxies provide insights into fine-scale geochemical responses to climatic forcing. Gamma-ray attenuation (GRA) bulk-density data and magnetic stratigraphy records from Palmer Deep, Site 1098, show variability close to the same scale as ice cores, making this site ideal for high-resolution geochemical investigations. In conjunction with shipboard geophysical measurements, silica records allow high-resolution evaluation of the frequencies and amplitudes of biogenic variability. This provides investigators additional data sets to evaluate the global extent of climatic events that are presently defined by regional oceanic data sets (e.g., Younger Dryas in the North Atlantic) and to evaluate the potential mechanisms that link biological productivity and climate in the Southern Ocean. In addition, because of the observed links between diatom blooms and export productivity (Michaels and Silver, 1988, doi:10.1016/0198-0149(88)90126-4), biogenic silica may be an indicator of the efficiency of the biological pump (removal of organic carbon from the euphotic zone and burial within the sediments). Because the net removal of CO2 (on short time scales up to millennial, the balance between upwelled CO2, carbon fixation, and the removal of organic carbon from the surface ocean) can determine the atmospheric concentration; proxies that allow us to quantify export production yield insights into carbon cycle responses. In today's ocean, diatoms are integrally linked with new production (production based on the use of nitrate and molecular nitrogen rather than ammonium, which is generated by the microbial degradation of organic carbon) (Dugdale and Goering, 1967). Thus, as with nutrient utilization proxies, biogenic silica may be a good indicator of export production. The difficulties lie in translating the biogenic opal burial records to export production. Numerous factors control the preservation of sedimentary biogenic silica, including depth of the water column, water temperature, trace element chemistry, grazing pressure, bloom structure, and species composition of the diatom assemblage (Nelson et al., 1995, doi:10.1029/95GB01070). In addition, several recent investigations have noted additional complications. Iron limitation increases the uptake of Si relative to carbon (Hutchins et al., 1998, ; Takeda, 1998, doi:10.1038/31674). In the Southern Ocean, iron limitation could produce more robust, and thus better preserved, diatoms; thus, the burial record may be a record of iron limitation rather than of the export of organic carbon (Boyle, 1998). In addition, laboratory experiments show that bacteria accelerate the dissolution of biogenic silica (Bidle and Azam, 1999, doi:10.1038/17351). Both the species composition and temperature seem to influence the amount of dissolution. Evidence of recycling of silicic acid within the photic zone (Brzezinski et al., 1997) suggests that the silica pump (removal from the euphotic zone of silica relative to nitrogen and phosphorus) may work with variable efficiency. This becomes an issue when trying to reconstruct the removal of organic carbon from sedimentary biogenic silica records. In fact, there is a wide range in the Si:Corganic molar ratio in the Southern Ocean (0.18-0.81) (Nelson et al., 1995; Ragueneau et al., 2000, doi:10.1016/S0921-8181(00)00052-7). Thus, the presence (or absence) of biogenic silica alone may tell us little about the export productivity, complicating the interpretation of age-related trends. One recent assessment has added some hope to links between productivity and opal burial in the Southern Ocean (Pondaven et al., 2000). Quantitative comparison of different productivity proxies will greatly aid in this evaluation.