726 resultados para 178-1098


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments recovered from a drift deposit lying along the Pacific margin of the Antarctic Peninsula, (ODP Leg 178, Site 1095) provide a physical record of the Antarctic Circumpolar Current since late Miocene time. Determination of the strength of the magnetic fabric, anisotropy of magnetic susceptibility, provides a proxy for current strength. Fabric strength declines throughout the record from high values in the late Miocene; a pronounced step occurs between 5.0 and 5.5 Ma, and values decrease more gradually since about 3.0 Ma. The mass accumulation rate of terrigenous sediment derived from the Antarctic Peninsula indicates stabilization of the Antarctic Peninsula Ice Cap prior to about 8.5 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protoperidiniacean dinoflagellate cysts were identified in 19 of 28 samples from two sites on the Antarctic Peninsula continental rise. Cysts are most common in the lower Pliocene and upper Miocene and include species of Brigantedinium, Lejeunecysta, and Selenopemphix. Autotrophic gonyaulacacean dinoflagellate cysts are very rare in the samples. The dominance of taxa derived from assumed heterotrophic dinoflagellate motile forms may indicate high nutrient content in the surface waters, which sustained a considerable diatom population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clay mineral compositions of upper Miocene to Quaternary sediments recovered at Ocean Drilling Program (ODP) Leg 178, Sites 1095 and 1096, from the continental rise west of the Antarctic Peninsula were analyzed in order to reconstruct the Neogene and Quaternary Antarctic paleoclimate and ice dynamics. The clay mineral assemblages are dominated by smectite, illite, and chlorite. Kaolinite occurs only in trace amounts. Analysis of a surface-sample data set facilitates the assignment of these clay minerals to particular source areas on the Antarctic Peninsula and, thus, the reconstruction of transport pathways. In the ODP cores, clay mineral composition cyclically alternates between two end-member assemblages. One assemblage is characterized by <20% smectite and >40% chlorite. The other assemblage has >20% smectite and <40% chlorite. Illite fluctuates between 30% and 50% without a significant affinity to one end-member assemblage. By comparison with a Quaternary sediment sequence from gravity core PS1565, the clay mineral fluctuations can be ascribed to glacial and interglacial periods, respectively. The cyclic changes in the clay mineral composition suggest that glacial-interglacial cycles, repeated ice advances and retreats, and changes in the Antarctic ice volume were already a main control of the global climate in late Miocene time. Throughout the late Neogene and Quaternary, the clay mineral records in the drift sediments exhibit only slight long-term changes predominantly attributed to local changes in glacial erosion and supply of source rocks. The absence of clear long-term trends associated with major climatic or glaciological changes points to an onset of vast glaciation in the Antarctic Peninsula region before ~9 Ma and to relative stability of the Antarctic ice sheet since then.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century warming. A unique diatom d18O record derived from a high-resolution deglacial seasonally laminated core section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species samples from individual laminae, season-specific isotope records were separately generated to show changes in glacial discharge to the coastal margin during spring and summer months. As well as documenting significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the environment that individual diatom species live in. Whilst deglacial d18O are typically lower than those for the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal alternations in excess of 3 per mil suggest significant variability in the magnitude of these inputs. These deglacial variations in glacial discharge are considerably greater than those seen in the modern day water column and would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a future framework for investigating links between annually resolved records of glacial dynamics and ocean/climate variability along the WAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of Ir have been measured in 87 sediment samples from Ocean Drilling Program Site 1096 in search of evidence of fallout from the impact of the Eltanin asteroid, which occurred at 2.15 Ma, ~1300 km northwest of the site. An additional six samples were measured from a unique sand layer and adjacent sediments that are dated at ~1.6 Ma. These 93 sediment samples are all silts and muds that were deposited on a continental rise drift of the Antarctic Peninsula. No evidence of the Eltanin impact deposit was found in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment drifts on the continental rise are located proximal to the western side of the Antarctic Peninsula and recorded changes in glacial volume and thermal regime over the last ca. 15 m.y. At Ocean Drilling Program (ODP) Site 1101 (Leg 178), which recovered sediments back to 3.1 Ma, glacial-interglacial cyclicity was identified based on the biogenic component and sedimentary structures observed in X-radiographs, magnetic susceptibility and lithofacies descriptions. Glacial intervals are dominated by fine-grained laminated mud and interglacial units consist of bioturbated muds enriched in biogenic components. From 2.2 to 0.76 Ma, planktonic foraminifera and calcareous nannofossils dominate in the interglacials suggesting a shift of the Antarctic Polar Front (APF) to the south near the drifts. Prior to 2.2 Ma, cyclicity cannot be identified and diatoms dominate the biogenic component and high percent opal suggests warmer conditions south of the APF and reduced sea ice over the drifts. Analyses of the coarse-grained terrigenous fraction (pebbles and coarse sand) from Sites 1096 and 1101 record glaciers at sea-level releasing iceberg-rafted debris (IRD) throughout the last 3.1 m.y. Analyses of quartz sand grains in IRD with the scanning electron microscope (SEM) show an abrupt change in the frequency of occurrence of microtextures at ~1.35 Ma. During the Late Pliocene to Early Pleistocene, the population of quartz grains included completely weathered grains and a low frequency of crushing and abrasion, suggesting that glaciers were small and did not inundate the topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass through the glacier unmodified. During glacial periods from 1.35-0.76 Ma, glaciers expanded in size. The IRD flux was very high and dropstones have diverse lithologies. Conditions resembling those at the Last Glacial Maximum (LGM) have been episodically present on the Antarctic Peninsula since ~0.76 Ma. Quartz sand grains show high relief, fracture and abrasion common under thick ice and the IRD flux is low with a more restricted range of dropstone lithologies.