795 resultados para amphibole olivine
Resumo:
The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in d11B (11-16 per mil) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of d11B values (9-10 per mil), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.
Effective stress, porosity, p-wave velocity and mineral composition of ODP Hole 174A-1073A sediments
Resumo:
Porosity, permeability, and compressional (P-wave) velocity were measured as a function of stress on sediments from Ocean Drilling Program Site 1073, U.S. Mid-Atlantic continental slope. Thin sections, scanning electron microscopy, and X-ray diffraction analyses provided mineralogical characteristics of the samples. Uniaxial strain boundary conditions were imposed on the samples during consolidation tests with the maximum effective axial stress reaching 13 MPa. The maximum effective radial stress necessary to maintain uniaxial strain was 7.6 MPa. Over an effective axial stress interval of 0 to 5.2 MPa, Sample 174A-1073A-26X-2, 82-89 cm (226.65 meters below seafloor [mbsf]), exhibited the largest decrease in porosity (51% to 41%), whereas Sample 71X-1, 2-8 cm (644.70 mbsf), exhibited the smallest decrease in porosity (48% to 45%). All samples showed negligible porosity increases during unloading. The permeability (on the order of 1 x 10-17 m**2) of Sample 174A-1073A-71X-1, 2-8 cm, was twice that measured on Sample 8H-1, 23-26 cm (63.75 mbsf), even though the former was considerably deeper and older. The differences in porosity-stress behavior and permeability between shallow and deep samples is related to lithologic, mineralogic, and diagenetic differences between the sediments above and below the Pliocene-Pleistocene to Miocene unconformity. P-wave velocity for Samples 174A-1073A-41X-5, 97-103 cm (372.35 mbsf), and 71X-1, 2-8 cm, increased with decreasing porosity, but did not change significantly during unloading.
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.
Resumo:
Both the olivine-hearing tholeiite basalts of the island and the brown soils which have developed on the basalts contain 2-20% of a swelling clay mineral. It emerges from chemical, optical, X-ray diffraction and differential thermal analytical studies that this clay mineral is a Mg-rich, Fe2+ and AI-bearing tri-octahedral smectite, e. g. Mg-saponite. Due to petrographic and crystal chemical properties the saponite should have been formed by hydrothermal alteration of the primary Mg-Fe-minerals olivine and clinopyroxene. The soils consist of plagioclase, saponite and goethite which has been formed by chemical weathering within the soils. In the uppermost layer some of the soils contain humic substances and phosphatic material, the latter may be related to the recent production of guano.
Resumo:
The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.
Resumo:
Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.
Resumo:
One-atmosphere melting experiments, controlled to approximately the fayalite-magnetite-quartz oxygen buffer, performed on a basalt from Hole 797C crystallized olivine and plagioclase nearly simultaneously from about 1235°C and augite from about 1175°C. The liquid compositions indicate systematic trends of increasing FeO and TiO2 and decreasing Al2O3 with decreasing MgO. Experimental olivine compositions vary from Fo90 to Fo78, plagioclase from An79 to An67, and augite from En49 to En46. The KD value for the Fe2+ and Mg distribution between olivine and liquid is 0.31. The KD value for the distribution of Fetotal and Mg between augite and liquid averages 0.24. These KD values suggest experimental equilibrium. The KD values for Na and Ca distribution between plagioclase and liquid range between 0.55 and 0.99 and are dependent on crystallization temperature. Projected on pseudoternary basaltic phase diagrams, the liquid line of descent moves toward increasing quartz normative compositions, revealing a typical tholeiitic crystallization trend with marked Fe and Ti enrichments. Such enrichments are a reflection of the dominance of plagioclase in the crystallizing assemblage. The experimental results can explain the marked Fe- and Ti-enrichment trends observed for the sills of the lower part of Hole 797C, but have no direct bearing on the origin of the relatively evolved high-Al basalts of Hole 794C.
Resumo:
Major-, trace-, and rare-earth element analyses of the basaltic rocks recovered from the basement of the Sulu Sea and of lithic clasts from the pyroclastic unit representing the acoustic basement of the Cagayan Ridge, are presented. The major and trace elements were measured by X-ray fluorescence techniques, and rare-earth elements by instrumental neutron activation analysis. These data show that the Sulu Sea basalts are back-arc tholeiites and the lithic clasts are basalts, basaltic andesites, and andesites typical of volcanic arc suites erupted on continental crust. Petrogenetic modeling is used to show that the Sulu Sea basalts were derived from a heterogeneous mantle, probably representing subcontinental lithosphere, with contributions from a subduction component. The Sulu Sea is interpreted as a back-arc basin formed by rifting of an Oligocene to early Miocene volcanic arc leaving the Cagayan Ridge as a remnant arc. This event occurred during northward subduction of the Celebes Sea basement beneath the Oligocene to early Miocene arc.
Resumo:
Basalts recovered on DSDP Leg 92 include all the major basalt types so far recovered from the ocean crust of the eastern Pacific. Basalts from Holes 597, 597A, 597B, 597C, and 599B are tholeiites exhibiting all the mineralogical and geochemical characteristics of N-type mid-ocean ridge basalts (MORB). Fragments of ferrobasalts and alkali basalts were also obtained, however, from Holes 60IB and 602B, respectively. Hole 597C, which penetrated 91 m into basement and is the deepest hole so far drilled in fast-spreading crust, yielded basalts that can be divided into three major lithologic units. The lowest unit, Unit III, contains modal olivine and comprises basalts which, at about 8 to 10% MgO, are as basic as any sampled from fast-spreading crust. The middle unit, Unit II, is the most evolved; its basalts are olivine free and contain between 6 and 7.5% MgO. The upper unit, Unit I, is intermediate in composition between Units II and III; it is characterized by both modal olivine and glomerocrysts made up of plagioclase and rare olivine. Unit I is probably a massive flow, whereas Units II and III may be massive flows or sills. The basalts appear to have undergone three stages of alteration ("deuteric," "relatively reducing," and "oxidizing"), the intensity of alteration decreasing markedly downcore. Hole 597B, at 26.4 m of basement penetration the only other "deep" hole, contains just one lithologic unit, which closely resembles Unit I of Hole 597C. Petrogenetic modeling reveals that the three lithologic units in Hole 597C are cogenetic and that they were derived from a depleted mantle source similar to the source of the tholeiites and ferrobasalts sampled in other holes; the alkali basalts are the only rocks derived from enriched mantle. Lavas of Unit III probably lay on the olivine-plagioclase cotectic, whereas the other lavas lay on an olivine-plagioclase-clinopyroxene peritectic. Some 60% of closed-system crystallization is needed to generate the most-evolved from the last-fractionated tholeiite, and a further 50% crystallization (80% overall) is needed to generate the ferrobasalts. Xenocrysts of calcic plagioclase and pseudomorphosed olivine in tholeiites from Hole 597B and Unit I of Hole 597C, and in the ferrobasalts from Hole 601B, provide evidence, however, that some magma mixing may have taken place.