854 resultados para SFB261
Resumo:
Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.
Resumo:
In the South Atlantic and adjoining Southern Ocean the kaolinite/chlorite-ratio in Late Quaternary sediments are an alternative deep water proxy to benthic foraminiferal proxies and carbonate preservation indices that is even suitable in regions with poor carbonate preservation. This paper shows the relationship between modern abyssal circulation and the kaolinite/chloriteratio and presents reconstructions of deep and bottom water advection based on the kaolinite/ chlorite proxy. We also discuss the limitations and future perspectives of the kaolinite/chlorite proxy. Latitudinal and water depth-related patterns of the kaolinite/chlorite-ratio in surface sediments correspond to the modern deep and bottom water mass distribution. Kaolinite originates from lowlatitudes and traces North Atlantic Deep Water (northern-source deep water) advection to the south. Chlorite from the southern high-latitudes is exported via northward advecting Antarctic Bottom Water and Circumpolar Deep Water (southern-source deep and bottom water). Deep-sea sedimentation in regions underlying the Antarctic Circumpolar Current was current-dominated throughout the Late Quaternary. Temporal variations of the kaolinite/chlorite-ratio in response to glacial-interglacial cycles reflect changing deep water mass configurations, suggesting a shallowing and northward retreat of northern-source deep water and accordingly wider expansion of southernsource deep and bottom water masses during glacial times relative to interglacial times. Submarine topography influenced the spatial and temporal patterns of deep water mass distribution.
Resumo:
The stable isotope composition of planktonic foraminifera correlates with evidence for pulses of terrigenous sediment in a sediment core from the upper continental slope off northeastern Brazil. Stable oxygen isotope records of the planktonic foraminiferal species Globigerinoides sacculifer and Globigerinoides ruber (pink) reveal sub-Milankovitch changes in sea-surface hydrography during the last 85,000 yr. Warming of the surface water coincided with terrigenous sedimentation pulses that are inferred from high XRF intensities of Ti and Fe, and which suggest humid conditions in northeast Brazil. These tropical signals correlate with climatic oscillations recorded in Greenland ice cores (Dansgaard-Oeschger cycles) and in sediment cores from the North Atlantic (Heinrich events). Trade winds may have caused changes in the North Brazil Current that altered heat and salt flux into the North Atlantic, thus affecting the growth and decay of the large glacial ice sheets.
Resumo:
A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.
Resumo:
Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk 37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.