715 resultados para PHOTOGRAPHS
Resumo:
Within the context of the overall ecological working programme Dynamics of Antarctic Marine Shelf Ecosystems (DynAMo) of the PS96 (ANT-XXXI/2) cruise of RV "Polarstern" to the Weddell Sea (Dec 2015 to Feb 2016), seabed imaging surveys were carried out along drift profiles by means of the Ocean Floor Observation System (OFOS) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Bremerhaven. The setup and mode of deployment of the OFOS was similar to that described by Bergmann and Klages (2012, doi:10.1016/j.marpolbul.2012.09.018). OFOS is a surface-powered gear equipped with two downward-looking cameras installed side-by-side: one high-resolution, wide-angle still camera (CANON® EOS 5D Mark III; lens: Canon EF 24 f/1.4L II, f stop: 13, exposure time: 1/125 sec; in-air view angles: 74° (horizontal), 53° (vertical), 84° (diagonal); image size: 5760 x 3840 px = 21 MPix; front of pressure resistant camera housing consisting of plexiglass dome port) and one high-definition color video camera (SONY® FCB-H11). The system was vertically lowered over the stern of the ship with a broadband fibre-optic cable, until it hovers approximately 1.5 m above the seabed. It was then towed after the slowly sailing ship at a speed of approximately 0.5 kn (0.25 m/s). The ship's Global Acoustic Positioning System (GAPS), combining Ultra Short Base Line (USBL), Inertial Navigation System (INS) and satellite-based Global Positioning System (GPS) technologies, was used to gain highly precise underwater position data of the OFOS. During the profile, OFOS was kept hanging at the preferred height above the seafloor by means of the live video feed and occasional minor cable-length adjustments with the winch to compensate small-scale bathymetric variations in seabed morphology. Information on water depth and height above the seafloor were continuously recorded by means of OFOS-mounted sensors (GAPS transponder, Tritech altimeter). Three lasers, which are placed beside the still camera, emit parallel beams and project red light points, arranged as an equilateral triangle with a side length of 50 cm, in each photo, thus providing a scale that can be used to calculate the seabed area depicted in each image and/or measure the size of organisms or seabed features visible in the image. In addition, the seabed area depicted was estimated using altimeter-derived height above seafloor and optical characteristics of the OFOS still camera. In automatic mode, a seabed photo, depicting an area of approximately 3.45 m**2 (= 2.3 m x 1.5 m; with variations depending on the actual height above ground), was taken every 30 seconds to obtain series of "TIMER" stills distributed at regular distances along the profiles that vary in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m. Additional "HOTKEY" photos were taken from interesting objects (organisms, seabed features, such as putative iceberg scours) when they appeared in the live video feed (which was also recorded, in addition to the stills, for documentation and possible later analysis). If any image from this collection is used, please cite the reference as given above.
Resumo:
Young specimens of cf. Pagothenia borchgrevinki were observed for the first time to cling to the subsurface of the marginal ice shelf in Drescher Inlet, southeastern Weddell Sea. Along an approximately 40-m-long videotransect at 80 m water depth, the abundance was roughly estimated to be 7 individuals per 10 m**2. This behaviour is interpreted to represent the most advanced adaptation to ice as a microhabitat for Antarctic fish.
Resumo:
Although the use of deep-sea imagery considerably increased during the last decades, reports on nekton falls to the deep seafloor are very scarce. Whereas there are a few reports describing the finding of whale carcasses in the deep north-eastern and south-eastern Pacific, descriptions of invertebrate or vertebrate food-falls at centimetre to metre scale are extremely rare. After 4 years of extensive work at a deep-sea long-term station in northern polar regions (AWI-"Hausgarten"), including large-scale visual observations with various camera systems covering some 10 000 m2 of seafloor at water depths between 1250 and 5600 m, this paper describes the first observation of a fish carcass at about 1280 m water depth, west off Svålbard. The fish skeleton had a total length of 36 cm and an approximated biomass of 0.5 kg wet weight. On the basis of in situ experiments, we estimated a very short residence time of this particular carcass of about 7 h at the bottom. The fast response of the motile deep-sea scavenger community to such events and the rapid utilisation of this kind of organic carbon supply might partly explain the extreme rarity of such an observation.