767 resultados para MIXED-LAYER
Resumo:
Clay mineral assemblages at ODP Site 1146 in the northern South China Sea are used to investigate sediment source and transport processes and to evaluate the evolution of the East Asian monsoon over the past 2 Myr. Clay minerals consist mainly of illite (22-43%) and smectite (12-48%), with associated chlorite (10-30%), kaolinite (2-18%), and random mixed-layer clays (5-22%). Hydrodynamic and mineralogical studies indicate that illite and chlorite sources include Taiwan and the Yangtze River, that smectite and mixed-layer clays originate predominantly from Luzon and Indonesia, and that kaolinite is primarily derived from the Pearl River. Mineral assemblages indicate strong glacial-interglacial cyclicity, with high illite, chlorite, and kaolinite content during glacials and high smectite and mixed-layer clay content during interglacials. During interglacials, summer enhanced monsoon (southwesterly) currents transport more smectite and mixed-layer clays to Site 1146 whereas during glacials, enhanced winter monsoon (northerly) currents transport more illite and chlorite from Taiwan and the Yangtze River. The ratio (smectite+mixed layers)/(illite+chlorite) was adopted as a proxy for East Asian monsoon variability. Higher ratios indicate strengthened summer-monsoon winds and weakened winter-monsoon winds during interglacials. In contrast, lower ratios indicate a strongly intensified winter monsoon and weakened summer monsoon during glacials. Spectral analysis indicates the mineral ratio was dominantly forced by monsoon variability prior to the development of large-scale glaciation at 1.2 Myr and by both monsoon variability and the effects of changing sea level in the interval 1.2 Myr to present.
Resumo:
The present study was conducted to provide information about living coccolithophores from the northern Arabian Sea as potential proxies in palaeoceanographic studies. In all, 71 plankton samples from 16 stations collected in September 1993 were analysed for their contents of living coccolithophores. Absolute abundances range from less than 400 coccospheres per litre in surface waters to 35 000 spheres per litre at intermediate water depths. From 49 identified taxa, nine species contribute significant cell numbers of more than 2000 coccospheres per litre and comprise more than 10% of the communities in at least one sample. Important species are (in approximate order of cell abundances): Gephyrocapsa oceanica, Florisphaera profunda, Oolithotus antillarum, Calciosolenia murrayi, Umbellosphaera irregularis, Emiliania huxleyi, Umbellosphaera tenuis, Calciopappus rigidus, and Algirosphaera robusta. At most profiles, a vertical succession of coccolithophore species was found. Calciosolenia murrayi and C. rigidus were restricted to surface waters, whereas high numbers of F. profunda and A. robusta occurred at depths below 40 m. The coccolithophore communities reflected the local oceanographic situation and seemed to be more dependent on mixed layer depth and nutrient availability than on temperature and salinity changes. Additionally, synecologic competition with diatoms in part controlled the species composition and generally reduced the abundance of coccolithophores. Synecological and ecological tolerances of species were discussed with the help of cluster analysis.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM) has been attributed to a rapid rise in greenhouse gas levels. If so, warming should have occurred at all latitudes, although amplified toward the poles. Existing records reveal an increase in high-latitude sea surface temperatures (SSTs) (8° to 10°C) and in bottom water temperatures (4° to 5°C). To date, however, the character of the tropical SST response during this event remains unconstrained. Here we address this deficiency by using paired oxygen isotope and minor element (magnesium/calcium) ratios of planktonic foraminifera from a tropical Pacific core to estimate changes in SST. Using mixed-layer foraminifera, we found that the combined proxies imply a 4° to 5°C rise in Pacific SST during the PETM. These results would necessitate a rise in atmospheric pCO2 to levels three to four times as high as those estimated for the late Paleocene.
Resumo:
Eleven sediment samples taken downcore and representing the past 26 kyr of deposition at MANOP site C (0°57.2°N, 138°57.3°W) were analyzed for lipid biomarker composition. Biomarkers of both terrestrial and marine sources of organic carbon were identified. In general, concentration profiles for these biomarkers and for total organic carbon (TOC) displayed three common stratigraphic features in the time series: (1) a maximum within the surface sediment mixed layer (<=4 ka); (2) a broad minimum extending throughout the interglacial deposit; and (3) a deep, pronounced maximum within the glacial deposit. Using the biomarker records, a simple binary mixing model is described that assesses the proportion of terrestrial to marine TOC in these sediments. Best estimates from this model suggest that ~20% of the TOC is land-derived, introduced by long-range eolian transport, and the remainder is derived from marine productivity. The direct correlation between the records for terrestrial and marine TOC with depth in this core fits an interpretation that primary productivity at site C has been controlled by wind-driven upwelling at least over the last glacial/interglacial cycle. The biomarker records place the greatest wind strength and highest primary productivity within the time frame of 18 to 22 kyr B.P. Diagenetic effects limit our ability to ascertain directly from the biomarker records the absolute magnitude that different types of primary productivity have changed at this ocean location over the past 26 kyr.
Resumo:
The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about water column features at the sampling location. Based on in situ measurements of... at the...
Resumo:
Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set is a registry of all samples collected during the Tara Oceans Expedition (2009-2013). The registry provides details about the sampling location and methodology of each sample. Uniform resource locators (URLs) offer direct links to additional contextual environmental data published at PANGAEA, and to the corresponding nucleotides data published at the European Nucleotides Archive (EBI-ENA).
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set is a registry of all events conducted during the Tara Oceans Expedition (2009-2013). The registry provides details about the sampling date, time, location and methodology of each event. Uniform resource locators (URLs) offer direct links to the corresponding (1) event logsheet filled on board, (2) environmental data published at PANGAEA, (3) list of samples prepared on board from each event, and (4) nucleotides data published at the European Nucleotides Archive (EBI-ENA).
Resumo:
The Ice Station POLarstern (ISPOL) cruise revisited the western Weddell Sea in late 2004 and obtained a comprehensive set of conductivity-temperature-depth (CTD) data. This study describes the thermohaline structure and diapycnal mixing environment observed in 2004 and compares them with conditions observed more than a decade earlier. Hydrographic conditions on the central western Weddell Sea continental slope, off Larsen C Ice Shelf, in late winter/early spring of 2004/2005 can be described as a well-stratified environment with upper layers evidencing relict structures from intense winter near-surface vertical fluxes, an intermediate depth temperature maximum, and a cold near-bottom layer marked by patchy property distributions. A well-developed surface mixed layer, isolated from the underlying Warm Deep Water (WDW) by a pronounced pycnocline and characterized by lack of warming and by minimal sea-ice basal melting, supports the assumption that upper ocean winter conditions persisted during most of the ISPOL experiment. Much of the western Weddell Sea water column has remained essentially unchanged since 1992; however, significant differences were observed in two of the regional water masses. The first, Modified Weddell Deep Water (MWDW), comprises the permanent pycnocline and was less saline than a decade earlier, whereas Weddell Sea Bottom Water (WSBW) was horizontally patchier and colder. Near-bottom temperatures observed in 2004 were the coldest on record for the western Weddell Sea over the continental slope. Minimum temperatures were ~0.4 and ~0.3 °C colder than during 1992-1993, respectively. The 2004 near-bottom temperature/salinity characteristics revealed the presence of two different WSBW types, whereby a warm, fresh layer overlays a colder, saltier layer (both formed in the western Weddell Sea). The deeper layer may have formed locally as high salinity shelf water (HSSW) that flowed intermittently down the continental slope, which is consistent with the observed horizontal patchiness. The latter can be associated with the near-bottom variability found in Powell Basin with consequences for the deep water outflow from the Weddell Sea.
Resumo:
As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE) we have measured the vertical distribution of 234Th on sections through the Antarctic Circumpolar Current along the zero meridian and in Drake Passage and on an EW section through the Weddell Sea. Steady state export fluxes of 234Th from the upper 100m, derived from the depletion of 234Th with respect to its parent 238U, ranged from 621±105 dpm/m**2/d to 1773±90 dpm/m**2/d. This 234Th flux was converted into an export flux of organic carbon ranging from 3.1-13.2 mmolC/m**2/d (2.1-9.0 mmolC/m**2/d) using POC/234Th ratio of bulk (respectively >50 µm) suspended particles at the export depth (100 m). Non-steady state fluxes assuming zero flux under ice cover were up to 23% higher. In addition, particulate and dissolved 234Th were measured underway in high resolution in the surface water with a semi-automated procedure. Particulate 234Th in surface waters is inversely correlated with light transmission and pCO2 and positively with fluorescence and optical backscatter and is interpreted as a proxy for algal biomass. High resolution underway mapping of particulate and dissolved 234Th in surface water shows clearly where trace elements are absorbed by plankton and where they are exported to depth. Quantitative determination of the export flux requires the full 234Th profile since surface depletion and export flux become decoupled through changes in wind mixed layer depth and in contribution to export from subsurface layers. In a zone of very low algal abundance (54-58 °S at the zero meridian), confirmed by satellite Chl-a data, the lowest carbon export of the ACC was observed, allowing Fe and Mn to maintain their highest surface concentrations (Klunder et al., this issue, Middag et al., this issue). An ice-edge bloom that had developed in Dec/Jan in the zone 60-65 °S as studied during the previous leg (Strass et al., in prep) had caused a high export flux at 64.5 °S when we visited the area two months later (Feb/March). The ice-edge bloom had then shifted south to 65-69 °S evident from uptake of CO2 and dissolved Fe, Mn and 234Th, without causing export yet. In this way, the parallel analysis of 234Th can help to explain the scavenging behaviour of other trace elements.
Resumo:
Hole 997A was drilled during Leg 164 of the Ocean Drilling Program at a depth of 2770 m on the topographic crest of the Blake Ridge in the western Atlantic Ocean. We report here an analysis of the faunal assemblages of planktonic foraminifers in a total of 91 samples (0.39-91.89 mbsf interval) spanning the last 2.15 m.y., latest Pliocene to Holocene. The abundant species, Globigerinoides ruber, Globigerinoides sacculifer, Neogloboquadrina dutertrei, Globorotalia inflata, and Globigerinita glutinata together exceed over ~70% of the total fauna. Each species exhibits fluctuations with amplitudes of 10%-20% or more. Despite their generally low abundance, the distinct presence/absence behavior of the Globorotalia menardii group is almost synchronous with glacial-interglacial climate cycles during the upper part of Brunhes Chron. The quantitative study and factor analysis of planktonic foraminiferal assemblages shows that the planktonic foraminiferal fauna in Hole 997A consists of four groups: warm water, subtropical gyre (mixed-layer species), gyre margin (thermocline/upwelling species), and subpolar assemblages. The subtropical gyre assemblage dominates throughout the studied section, whereas the abundance of gyre margin taxa strongly control the overall variability in faunal abundance at Site 997. In sediments older than the Olduvai Subchron, the planktonic foraminiferal faunas are characterized by fluctuations in both the subtropical gyre and gyre margin assemblages, similar to those in the Brunhes Chron. The upwelling/gyre margin fauna increased in abundance just before the Jaramillo Subchron and was dominant between 0.7 and 1.07 Ma. The transition from this gyre margin-dominated assemblage to an increase in abundance of the subtropical gyre and gyre margin species occurred around 0.7 Ma, near the Brunhes/Matuyama boundary. The presence of low-oxygen-tolerant benthic foraminifers, pyrite tubes, and abundant diatoms below the Brunhes/Matuyama boundary suggests decreased oxygenation of intermediate waters and more upwelling over the Blake-Bahama Outer Ridge, perhaps because of weaker Upper North Atlantic Deep Water ventilation. The changes in the relative composition of foraminifer assemblages took place at least twice, around 700 and 1000 ka, close to the ~930-ka switch from obliquity-forced climate variation to the 100-k.y. eccentricity cycle. The climate shift at 700 ka suggests a transition from relatively warmer conditions in the early Pleistocene to warm-cool oscillations in the Brunhes Chron.
Resumo:
Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely on our knowledge of the apparent calcification depth (ACD) and ecology of planktonic foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The ACD of different species varies strongly between ocean basins, but also regionally. We constrained foraminiferal ACDs in the western Pacific warm pool (Manihiki Plateau) by comparing stable oxygen and carbon isotopes (d18Ocalcite, d13Ccalcite) as well as Mg/Ca ratios from living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, salinity, d18Oseawater, d13CDIC). Our analyses point to Globigerinoides ruber as the shallowest dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globotaloides hexagonus inhabiting increasingly greater depths. These findings are consistent with other ocean basins; however, absolute ACDs differ from other studies. The uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of ~95 m and ~120 m, respectively. These Western Pacific ACDs are much deeper than in most other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing waters from the Pacific equatorial divergence, while P. obliquiloculata with an ACD of ~160 m is more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. As the d13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-topical regions.
Resumo:
The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.