975 resultados para Core drilling
Resumo:
Foraminifera are examined in twenty-six samples from a 44 metre succession of Quaternary glacial sediments recovered from the CRP-1 drillhole on Roberts Ridge, southwestern Ross Sea, Antarctica. In situ marine assemblages were documented in at least three of the six lithostratigraphic units, and it is likely that the remaining three interbedded diamicton units are also marine in origin. Peak foraminiferal diversities are documented in Unit 3.1 (73 species) and Unit 2.2 (32 species). Calcareous benthics dominate the assemblages, but may be accompanied by abundant occurrences of the planktonic Neogloboquadrina pachyderma. Low diversity agglutinated faunas appear in the uppermost strata of Units 4.1 and 2.2. A close relationship between lithofacics and foraminiferal biofacies points to marine environments that alternated between proximity to and distance from active glaciers and iceshelf fronts, with associated variations in salinity, sea-surface ice cover and the levels of rainout from debris-laden ice.
Resumo:
An 823 m thick glaciomarine Cenozoic section sitting unconformably on the Lower Devonian Beacon Supergroup was recovered in CRP-3. This paper reviews the chronostratigraphical constraints for the Cenozoic section. Between 3 and 480.27 mbsf 23 unconformity bounded cycles of sediment were recorded. Each unconformity is thought to represent a hiatus of uncertain duration. Four magnetozones have been recognised from the Cenozoic section. The record is complex with several 'tiny wiggles'' recorded throughout. Biostratigraphical or Sr ages, which could be used to link these magnetozones to the magnetic polarity time scale are restricted to the upper 190 m of sediment. Two diatom datums (Cavitatus jouseanus at 48.9 mbsf and Rhizosolenica antarctica at 68.60 mbsf), together with five Sr-isotope dates derived from molluscan fragments taken from between 10.88 and 190.29 mbsf indicate an early Oligocene (c. 31 Ma) age for this interval. The appearance of a new species of the bivalve ?Adamussium at about 325 mbsf, suggests that the Oligocene age can be extended down to this level. This confirms that the dominantly reversed magnetozone (RI), recorded down to about 340 mbsf, is Chron C12r. The ages imply high sedimentation rates and only minimal time gaps at the sequence boundaries. Below 340 mbsf there are no independent datums to guide the correlation of the magnetozones to the magnetic polarity time scale. However, the absence of in situ dinocysts attributable to Transantarctic Flora, if not a result of environmental control, limits the age of the base of the hole to between c. 33.5 and 35 Ma.