1000 resultados para Cibicidoides wuellerstorfi, d13C


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stratigraphy and paleoceanography of the late Miocene and early Pliocene have been examined at six sites in the South Atlantic and southwest Pacific oceans: Deep Sea Drilling Project (DSDP) sites 284, 516A, 519, 588, and 590 and two piston cores from Chain cruise 115. A consistent stratigraphy was developed among sites using graphic correlation, which resulted in age models for all sites that are tied to the revised paleomagnetic time scale of Berggren et al. (1985). Applying these chronologies, we assessed latitudinal and interocean contrasts in the stratigraphic ranges of late Miocene-early Pliocene planktonic foraminiferal and nanno - fossil datums. Salient stratigraphic results include (1) The last appearance datum (LAD) of Globoquadrina dehiscens is a late Miocene (approx. 6.4 Ma) event in the subtropics and is not useful for the placement of the Miocene/Pliocene (M/P) boundary in this biogeographic province. (2) The first appearance datum (FAD) of Globorotalia crassaformis occurred at 5.1 Ma in the South Atlantic near the M/P boundary, suggesting that Gr. crassaformis may have first evolved in the South Atlantic and later migrated to other regions. (3) In the southwest Pacific, the FADs of Gr. margaritae (5.97 Ma), Gr. puncticulata (5.09 Ma), and Gr. crassaformis (4.87 Ma) are significantly time transgressive between temperate and warm subtropical regions. Time lags of 1.0 m.y. were required for these species to adapt to physical and/or biotic conditions peripheral to their endemic biogeographic provinces. (4) Between the subtropics of the South Atlantic and southwest Pacific, many planktonic foraminiferal datums (FAD of Dentogloboquadrina altispira, Gr. cibaoensis, Gr. conomiozea, Gr. margaritae, and Gq. dehiscens and LAD of Gr. cibaoensis) markedly depart from the correlation suggested by magnetostratigraphy, indicating that these datum levels are unreliable for correlation between these ocean basins. (5) In contrast, available calcareous nannofossil datum levels fall on or near the paleomagnetic correlation line, indicating synchroneity of events within the subtropics. (6) Biostratigraphic, magnetic, and 87Sr/86Sr correlation between sites 588 and 519 and the M/P neostratotype at Capo Rossello, Sicily, suggests that the base of the Zanclean stratotype occurs at 5.1-5.0 Ma in the lower reversed subchron of the Gilbert, about 2-3 * 10**5 years above the Gilbert/Chron 5 boundary. Oxygen isotopic results from DSDP sites 284, 519, and CH115 piston cores confirm a prolonged benthic d18O increase in the latest Miocene between 5.6 and 5.0 Ma, as originally proposed by Shackleton and Kennett (1975). At DSDP site 588, the benthic d18O record in the latest Miocene is marked by high-frequency fluctuations with amplitude variations of 0.5per mill, and a long-period wavelength component of 400,000 years. Maximum d18O values, however, occurred during the late Miocene (Kapitean Stage) between 5.5 and 5.1 Ma. The late Miocene d18O changes resulted from mid- and high-latitude cooling and pulses of ice sheet expansion and contraction. Glacial events were most intense during the latest Miocene (Kapitean Stage), and occurred at 5.50-5.35 Ma and at 5.10 Ma. Glacial events are estimated to have lowered sea level by 40 to 60 m and contributed to the isolation and desiccation of the Mediterranean Basin during the late Messinian. Interglacial conditions prevailed at 5.2 Ma and between 5.0 and 4.1 Ma in the early Pliocene. The beginning of the Pliocene was marked by changes in many proxy climatic indicators at all sites, suggesting a prolonged interval of warm, interglacial conditions between 5.0 and 4.1 Ma during the earliest Pliocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic foraminiferal d13C and Cd/Ca studies suggest that deep Atlantic circulation during the Last Glacial Maximum was very different from today, with high-nutrient (low d13C, high Cd) deep Southern Ocean Water (SOW) penetrating far into the North Atlantic. However, if some glacial d13C values are biased by productivity artifacts and/or air-sea exchange processes, then the existing d13C data may be consistent with the continual dominance of North Atlantic Deep Water (NADW). Cibicidoides wuellerstorfi Cd/Ca results presented here indicate that the glacial North Atlantic was strongly enriched in dissolved Cd below ~2500 m depth. If NADW formation was still vigorous relative to SOW formation, these data could be explained by either increased preformed nutrient levels in the high-latitude North Atlantic or by increased organic matter remineralization within lower NADW. High glacial Zn/Ca values in the same samples, however, are best explained by a substantially increased mixing with Zn-rich SOW. The cause was most likely a partial replacement of NADW by less dense Glacial North Atlantic Intermediate Water. This reorganization also lowered deep North Atlantic [CO3]2- concentrations by perhaps 10 to 15 µmol/kg.