1000 resultados para COMPCORE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within a dipping sequence of middle Cretaceous to Eocene sediments on Broken Ridge, opal-A, opal-CT, and quartz occur as minor constituents in carbonate and ash-rich sediments. Biogenic opal-A is mainly derived from diatoms and radiolarians. Opal-A and almost all siliceous microfossils disappear within a narrow (<20-m-thick) transition zone below which authigenic opal-CT and quartz are present. These latter silica polymorphs occur together within a 750-m-thick interval, but the ratio of quartz/opal-CT increases with increasing age and depth within the pre-rift sediment sequence. The boundary between opal-A- and opal-CT-bearing sediments is also a physical boundary at which density, P-wave velocity, and acoustic impedance change. This physical transition is probably caused by infilling of pore space by opal-CT lepispheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios were measured in benthic foraminifers from the entire Pliocene and latest Miocene sections of Site 846, a 180-m section, at a sampling interval of 10 cm. This provides a temporal resolution of about 2500 yr. The documented continuity of the record is excellent. Using the time scale that was developed on the basis of orbital tuning of GRAPE density records, we observed a fairly constant phase relationship between delta18O and variations in the obliquity of Earth's rotational axis. A new numbering scheme for Pliocene isotope stages is proposed. This high-resolution delta18O record clarifies several interesting aspects of late Neogene climatic evolution, including a "glacial" event that may have caused the final Messinian desiccation of the Mediterranean Sea; one or more "interglacial" events that might have caused refilling of the Mediterranean; a well-resolved couplet of glacial events at about the age of the Sidujfall Subchron; interglacial extremes in the early part of the Gauss that could have resulted from either significant deglaciation on Antarctica or from warming of deep water; and a gradual ramp of increasingly extreme "glacial" events, starting at about the Kaena Subchron and culminating with delta18O stage 100 in the earliest Matuyama.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Snake Pit active hydrothermal field was discovered at 23°22'N on the Mid-Atlantic Ridge during ODP Leg 106. Among the ten holes drilled in the mound at the foot of an active chimney, only three (649B, 649F, and 649G) had substantial recovery, and produced cores of unconsolidated hydrothermal deposit made up of porous sulfide fragments with minor talc pellets and biological debris, and a few pieces of brassy massive sulfides. Eight representative samples from the 6.5-m-long core from Hole 649B were analyzed for bulk chemistry, both by XRF (major elements) and NAA (trace elements). Major elements average compositions show high Fe (36 wt%), S (37 wt%), and Cu (12 wt%) contents, and minor Zn (6.7 wt%), reflecting a mostly high-temperature deposit. Trace elements are characterized by a high Au content (600 ppb) which could express the maturity of the mound. Mineralogical assemblages show evidence of sequential precipitation, and absence of equilibrium. Major sulfide phases are pyrrhotite, pyrite, Fe, Cu sulfides, marcasite, and sphalerite. Three types of samples are distinguished on the basis of textures and mineral assemblages: type 1, rich in pyrrhotite, with approximately equivalent amounts of Cu, Fe sulfides, and sphalerite and minor pyrite; type 2, rich in Cu, Fe sulfides, which are cubic cubanite with exsolutions and rims of chalcopyrite; and type 3, essentially made up of sphalerite. Type 2 samples likely represent fragments of the inner chimney wall. The presence of talc intergrown with cubic cubanite/chalcopyrite in one big piece from Hole 649G is probably related to mixing of the hydrothermal fluid with seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strontium isotope ratios of authigenic carbonates from Indian Ocean sea-floor basalts have been used to determine the timing of carbonate mineral precipitation and fluid flow. The samples include calcites from 57.2 Ma crust from Ocean Drilling Project (ODP) Site 715, and calcites, aragonites, and siderites from 63.7 Ma crust from ODP Site 707. At Site 715, calcite precipitation may have begun at any time after the basalts cooled, and it continued until approximately 31 Ma, or 26 m.y. after basalt eruption. At Site 707, aragonite and siderite did not begin to precipitate until about 36 Ma, almost 30 m.y. after basalt eruption, and continued to precipitate until at least 30 and 28 Ma, respectively. Calcite precipitation began at approximately 32 Ma and continued until 22 Ma. These ages suggest that vein mineral deposition and low-temperature fluid circulation in the ocean crust may continue for much longer periods of time than previously observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1119 is located at water depth 395 m near the subtropical front (STF; here represented by the Southland Front), just downslope from the shelf edge of eastern South Island, New Zealand. The upper 86.19 metres composite depth (mcd) of Site 1119 sediment was deposited at an average sedimentation rate of 34 cm/kyr during Marine Isotope Stages (MIS) 1-8 (0-252 ka), and is underlain across a ~25 kyr intra-MIS 8 unconformity by MIS 8.5-11 (277-367 ka) and older sediment deposited at ~14 cm/kyr. A time scale is assigned to Site 1119 using radiocarbon dates for the period back to ~39 ka, and, prior to then, by matching its climatic record with that of the Vostok ice core, which it closely resembles. Four palaeoceanographic proxy measures for surface water masses vary together with the sandy-muddy, glacial-interglacial (G/I) cyclicity at the site. Interglacial intervals are characterised by heavy delta13C, high colour reflectance (a proxy for carbonate content), low Q-ray (a proxy for clay content) and light delta18O; conversely, glacial intervals exhibit light delta13C, low reflectance, high Q-ray and heavy delta18O signatures. Early interglacial intervals are represented by silty clays with 10-105-cm-thick beds of sharp-based (Chondrites-burrowed), shelly, graded, fine sand. The sands are rich in foraminifera, and were deposited distant from the shoreline under the influence of longitudinal flow in relatively deep water. Glacial intervals comprise mostly micaceous silty clay, though with some thin (2-10 cm thick) sands present also at peak cold periods, and contain the cold-water scallop Zygochlamys delicatula. Interglacial sandy intervals are characterised by relatively low sedimentation rates of 5-32 cm/kyr; cold climate intervals MIS 10, 6 and 2 have successively higher sedimentation rates of 45, 69 and 140 cm/kyr. Counter-intuitively,and forced by the bathymetric control of a laterally-moving shoreline during G/I and I/G transitions, the 1119 core records a southeasterly (seaward) movement of the STF during early glacial periods, accompanied by the incursion of subtropical water (STW) above the site, and northwesterly (landward) movement during late glacial and interglacial times, resulting in a dominant influence then of subantarctic surface water (SAW). The history of passage of these different water masses at the site is clearly delineated by their characteristic delta13C values. The intervals of thin, graded sands-muds which occur within MIS 2-3, 6, 7.4 and 10 indicate the onset at times of peak cold of intermittent bottom currents caused by strengthened and expanded frontal flows along the STF, which at such times lay near Site 1119 in close proximity to seaward-encroaching subantarctic waters within the Bounty gyre. In common with other nearby Southern Hemisphere records, the cold period which represents the last glacial maximum lasted between ~23-18 ka at Site 1119, during which time the STF and Subantarctic Front (SAF) probably merged into a single intense frontal zone around the head of the adjacent Bounty Trough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porewaters in site 680 Peru Margin sediments contain dissolved sulfide over a depth of approximately 70 m which, at a sedimentation rate of 0.005 cm/yr, gives a sediment exposure time to dissolved sulfide of about 1.4 Myr. Reactions with dissolved sulfide cause the site 680 sediments to show a progressive decrease in a poorly-reactive silicate iron fraction, defined as the difference between iron extracted by dithionite (FeD) at room temperature and that extracted by boiling concentrated HCl (FeH), normalised to the total iron content (FeT). Straight line plots are obtained for ln[(FeH - FeD)/FeT] against time of burial, from which a first order rate constant of 0.29 1/Myr (equivalent to a half-life of 2.4 Myr) can be derived for the sulfidation of this silicate iron. Comparable half-lives are also found for the same poorly-reactive iron fraction in the nearby site 681 and 684 sediments. This silicate Fe fraction comprises 0.8-1.0% Fe, only 30-60% of which reacts even with 1.5-3 million years exposure to dissolved sulfide. Diagenetic models based on porewater concentrations of sulfate and sulfide, and solid phase iron contents, at site 680 are consistent in indicating that this poorly-reactive iron fraction is only sulfidized on a million year time scale. Silicate iron not extracted by HCl can be regarded as unreactive towards dissolved sulfide on the time scales encountered in marine sediments.