777 resultados para Basalt


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five sites were drilled along a transect of the Walvis Ridge. The basement rocks range in age from 69 to 71 m.y., and the deeper sites are slightly younger, in agreement with the sea-floor-spreading magnetic lineations. Geophysical and petrological evidence indicates that the Walvis Ridge was formed at a mid-ocean ridge at anomalously shallow elevations. The basement complex, associated with the relatively smooth acoustic basement in the area, consists of pillowed basalt and massive flows alternating with nannofossil chalk and limestone that contain a significant volcanogenic component. Basalts are quartz tholeiites at the ridge crest and olivine tholeiites downslope. The sediment sections are dominated by carbonate oozes and chalks with volcanogenic material common in the lower parts of the sediment columns. The volcanogenic sediments probably were derived from sources on the Walvis Ridge. Paleodepth estimates based on the benthic fauna are consistent with a normal crustal-cooling rate of subsidence of the Walvis Ridge. The shoalest site in the transect sank below sea level in the late Paleocene, and benthic fauna suggest a rapid sea-level lowering in the mid-Oligocene. Average accumulation rates during the Cenozoic indicate three peaks in the rate of supply of carbonate to the sea floor, that is, early Pliocene, late middle Miocene, and late Paleocene to early Eocene. Carbonate accumulation rates for the rest of the Cenozoic averaged 1 g/cm**2/kyr. Dissolution had a marked effect on sediment accumulation in the deeper sites, particularly during the late Miocene, Oligocene, and middle to late Eocene. Changes in the rates of accumulation as a function of depth demonstrate that the upper part of the water column had a greater degree of undersaturation with respect to carbonate during times of high productivity. Even when the calcium carbonate compensation depth (CCD) was below 4400 m, a significant amount of carbonate was dissolved at the shallower sites. The flora and fauna of the Walvis Ridge are temperate in nature. Warmer-water faunas are found in the uppermost Maastrichtian and lower Eocene sediments, with cooler-water faunas present in the lower Paleocene, Oligocene, and middle Miocene. The boreal elements of the lower Pliocene are replaced by more temperate forms in the middle Pliocene. The Cretaceous-Tertiary boundary was recovered in four sites drilled, with the sediments containing well-preserved nannofossils but poorly preserved foraminifera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of the isotopic composition of Pb in (1) western Pacific Ocean sediments [Jurassic(?) to Pleistocene in age, including clays and biogenic oozes], (2) Pacific Ocean basaltic rocks, (3) Mariana frontal arc volcanic rocks (Eocene to Miocene), and (4) Mariana active arc volcanic rocks [Pliocene (?) to Holocene] indicate that Pacific Ocean sediments could not have been a significant component of the source material for the Mariana arc volcanic rocks. Calculations involving the average concentrations and isotopic compositions of Pb in oceanic sediments, sea-floor basaltic rocks, and the Mariana arc volcanic rocks suggest that the sediment component must have been less than 1 percent of this source material. The Pb isotopic compositions of the Mariana arc volcanic rocks lie, within experimental error, along the trend of available Pacific Ocean basalt analyses in versus 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams. Isotopic analyses of Pb in Pacific Ocean sediments do not lie along this trend; they have higher 207Pb/204Pb and 208Pb/204Pb values for comparable 206Pb/204Pb ratios. Clayey sediments generally have higher 208Pb/204Pb and 207Pb/204Pb ratios than biogenic oozes regardless of the age of the sediment. Comparison of combined Sr and Pb isotopic analyses for (1) mantle-derived materials erupted through oceanic crust, (2) altered ocean-floor basaltic rocks, and (3) volcanic rocks from oceanic island arcs suggests that the Mariana arc volcanic rocks were derived, at least in part, from altered Pacific lithosphere subducted beneath the Mariana arc. Unaltered basalts from the Mariana inter-arc basin (Mariana Trough) have Pb and Sr isotopic compositions that are very similar to those reported for some Hawaiian volcanic rocks but distinct from Mariana active and frontal arc compositions. These observations, in addition to existing major-and trace-element data, support a mantle origin for the interarc basin volcanic rocks. Dacites dredged from the Mariana remnant arc (South Honshu Ridge) have Pb isotopic compositions that are within experimental error of the active-arc analyses, consistent with a genetic relation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrographic and stable-isotope (d13C, d18O) patterns of carbonates from the Logatchev Hydrothermal Field (LHF), the Gakkel Ridge (GR), and a Late Devonian outcrop from the Frankenwald (Germany) were compared in an attempt to understand the genesis of carbonate minerals in marine volcanic rocks. Specifically, were the carbonate samples from modern sea floor settings and the Devonian analog of hydrothermal origin, low-temperature abiogenic origin (as inferred for aragonite in serpentinites from elsewhere on the Mid-Atlantic Ridge), or biogenic origin? Aragonite is the most abundant carbonate mineral in serpentinites from the two modern spreading ridges and occurs within massive sulfides of the LHF. The precipitation and preservation of aragonite suggests high Mg2+ and sulfate concentrations in fluids. Values of d18OPDB as high as +5.3 per mill for serpentinite-hosted aragonite and as high as +4.2 per mill for sulfide-hosted aragonite are consistent with precipitation from cold seawater. Most of the corresponding d13C values indicate a marine carbon source, whereas d13C values for sulfide-hosted aragonite as high as +3.6 per mill may reflect residual carbon dioxide in the zone of methanogenesis. Calcite veins from the LHF, by contrast, have low d18OPDB (-20.0 per mill to -16.1 per mill) and d13C values (-5.8 per mill to -4.5 per mill), indicative of precipitation from hydrothermal solutions (~129°-186°C) dominated by magmatic CO2. Calcite formation was probably favored by fluid rock interactions at elevated temperatures, which tend to remove solutes that inhibit calcite precipitation in seawater (Mg2+ and sulfate). Devonian Frankenwald calcites show low d18O values, reflecting diagenetic and metamorphic overprinting. Values of d13C around 0 per mill for basalt-hosted calcite indicate seawater-derived inorganic carbon, whereas d13C values for serpentinite-hosted calcite agree with mantle-derived CO2 (for values as low as -6 per mill) with a contribution of amagmatic carbon (for values as low as -8.6 per mill), presumably methane. Secondary mineral phases from the LHF for which a biogenic origin appears feasible include dolomite dumbbells, clotted carbonate, and a network of iron- and silica-rich filaments.