721 resultados para 178-1102B
(Table T7) Coarse-fraction particle counts, ages, and linear sedimentation rates, ODP Hole 178-1095A
(Table T7) Coarse-fraction particle counts, ages, and linear sedimentation rates, ODP Hole 178-1095B
Resumo:
Sediments recovered from a drift deposit lying along the Pacific margin of the Antarctic Peninsula, (ODP Leg 178, Site 1095) provide a physical record of the Antarctic Circumpolar Current since late Miocene time. Determination of the strength of the magnetic fabric, anisotropy of magnetic susceptibility, provides a proxy for current strength. Fabric strength declines throughout the record from high values in the late Miocene; a pronounced step occurs between 5.0 and 5.5 Ma, and values decrease more gradually since about 3.0 Ma. The mass accumulation rate of terrigenous sediment derived from the Antarctic Peninsula indicates stabilization of the Antarctic Peninsula Ice Cap prior to about 8.5 Ma.
Resumo:
Protoperidiniacean dinoflagellate cysts were identified in 19 of 28 samples from two sites on the Antarctic Peninsula continental rise. Cysts are most common in the lower Pliocene and upper Miocene and include species of Brigantedinium, Lejeunecysta, and Selenopemphix. Autotrophic gonyaulacacean dinoflagellate cysts are very rare in the samples. The dominance of taxa derived from assumed heterotrophic dinoflagellate motile forms may indicate high nutrient content in the surface waters, which sustained a considerable diatom population.
Resumo:
The clay mineral compositions of upper Miocene to Quaternary sediments recovered at Ocean Drilling Program (ODP) Leg 178, Sites 1095 and 1096, from the continental rise west of the Antarctic Peninsula were analyzed in order to reconstruct the Neogene and Quaternary Antarctic paleoclimate and ice dynamics. The clay mineral assemblages are dominated by smectite, illite, and chlorite. Kaolinite occurs only in trace amounts. Analysis of a surface-sample data set facilitates the assignment of these clay minerals to particular source areas on the Antarctic Peninsula and, thus, the reconstruction of transport pathways. In the ODP cores, clay mineral composition cyclically alternates between two end-member assemblages. One assemblage is characterized by <20% smectite and >40% chlorite. The other assemblage has >20% smectite and <40% chlorite. Illite fluctuates between 30% and 50% without a significant affinity to one end-member assemblage. By comparison with a Quaternary sediment sequence from gravity core PS1565, the clay mineral fluctuations can be ascribed to glacial and interglacial periods, respectively. The cyclic changes in the clay mineral composition suggest that glacial-interglacial cycles, repeated ice advances and retreats, and changes in the Antarctic ice volume were already a main control of the global climate in late Miocene time. Throughout the late Neogene and Quaternary, the clay mineral records in the drift sediments exhibit only slight long-term changes predominantly attributed to local changes in glacial erosion and supply of source rocks. The absence of clear long-term trends associated with major climatic or glaciological changes points to an onset of vast glaciation in the Antarctic Peninsula region before ~9 Ma and to relative stability of the Antarctic ice sheet since then.
Resumo:
Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century warming. A unique diatom d18O record derived from a high-resolution deglacial seasonally laminated core section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species samples from individual laminae, season-specific isotope records were separately generated to show changes in glacial discharge to the coastal margin during spring and summer months. As well as documenting significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the environment that individual diatom species live in. Whilst deglacial d18O are typically lower than those for the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal alternations in excess of 3 per mil suggest significant variability in the magnitude of these inputs. These deglacial variations in glacial discharge are considerably greater than those seen in the modern day water column and would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a future framework for investigating links between annually resolved records of glacial dynamics and ocean/climate variability along the WAP.
Resumo:
Palmer Deep is a series of three glacially overdeepened basins on the Antarctic Peninsula shelf, ~20 km southwest of Anvers Island. Site 1098 (64°51.72'S, 64°12.48'W) was drilled in the shallowest basin, Basin I, at 1012 m water depth. The sediment recovered was primarily laminated, siliceous, biogenic, pelagic muds alternating with siliciclastic hemipelagic sediments (Barker, Camerlenghi, Acton, et al., 1999). Sedimentation rates of 0.1725 cm/yr in the upper 25 m and 0.7-0.80 cm/yr in the lower 25 m of the core have been estimated from 14C (Domack et al., 2001). The oldest datable sediments have an age of ~13 ka and were underlain by diamicton sediments of the last glacial maximum (Domack et al., 2001). The large-scale water-mass distribution and circulation in the vicinity of Palmer Deep is dominated by Circumpolar Deep Water (CDW) below 200 m (Hofmann et al., 1996). Palmer Deep is too far from the coast to be influenced by glacial meltwater and cold-tongue generation associated with it (Domack and Williams, 1990; Dixon and Domack, 1991). Circulation patterns in the Palmer Deep area are not well understood, but evidence suggests southward flow across Palmer Deep from Anvers Island to Renaud Island (Kock and Stein, 1978). The water south of Anvers Island is nearly open with loose pack ice from February through May. The area is covered with sea ice beginning in June (Gloersen et al., 1992; Leventer et al., 1996). Micropaleontologic data from the work of Leventer et al. (1996) on a 9-m piston core has revealed circulation and climate patterns for the past 3700 yr in the Palmer Deep. The benthic foraminifer assemblage is dominated by two taxa, Bulimina aculeata and Bolivina pseudopunctata, which are inversely related. High relative abundances of B. aculeata occur cyclically over a period of ~230 yr. The assemblage associated with high abundance of B. aculeata in Palmer Deep resembles that from the Bellingshausen shelf, which is associated with CDW. In addition to the faunal evidence, hydrographic data indicate incursions of CDW into Palmer Deep (Leventer et al., 1996). A distinctive diatom assemblage dominated by a single genus was associated with peaks in B. aculeata, whereas a few different assemblages were associated with lows in B. aculeata. Leventer et al. (1996) interpreted the variability in diatom assemblages as an indication of changes in productivity associated with changes in water column stability. Abelmann and Gowing (1997) studied the horizontal and vertical distributions of radiolarians in the Atlantic sector of the Southern Ocean. They show that the spatial distribution of radiolarian assemblages reflects hydrographic boundaries. In a transect from the subtropical Atlantic to polar Antarctic zones, radiolarians in the upper 1000 m of the water column occurred in distinct surface and deep-living assemblages related to water depth, temperature, salinity, and nutrient content. Living assemblages resembled those preserved in underlying surface sediments (Abelmann and Gowing, 1997). Circumantarctic coastal sediments from neritic environments contained a distinctive assemblage dominated by the Phormacantha hystrix/Plectacantha oikiskos group and Rhizoplegma boreale (Nishimura et al., 1997). Low diversity and species compositions distinguished the coastal sediments from the typical pelagic Antarctic assemblages. Factors that controlled the assemblages were water depth, proximity to the coast, occurrence of sea ice, and steepness of topography, rather than temperature and salinity. Nishimura et al. (1997) found a gradient of sorts from deep-water sites containing diverse assemblages typical of pelagic environments to coastal sites with low diversity assemblages dominated by P. hystrix/P. oikiskos group and R. boreale. In general, sites between these two extremes had increased proportions of the coastal assemblage with decreasing water depth (Nishimura et al., 1997). At a site near Hole 1098 (GC905), they showed that the relative abundance of the coastal assemblage increased downcore (Nishimura et al., 1997). The purpose of the research presented here was to make a cursory investigation into the radiolarian assemblages as possible paleoenvironmental indicators.
Resumo:
Concentrations of Ir have been measured in 87 sediment samples from Ocean Drilling Program Site 1096 in search of evidence of fallout from the impact of the Eltanin asteroid, which occurred at 2.15 Ma, ~1300 km northwest of the site. An additional six samples were measured from a unique sand layer and adjacent sediments that are dated at ~1.6 Ma. These 93 sediment samples are all silts and muds that were deposited on a continental rise drift of the Antarctic Peninsula. No evidence of the Eltanin impact deposit was found in this study.