684 resultados para Carbon Isotopes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising stable nitrogen isotope ratios (d15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The d15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated d15N values (> 20 per mil) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (d15N > 10 per mil) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a d15N between 5 and 6 per mil had low d15N values (< 2 per mil), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore-onshore transect also reflect the gradient of low d15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual d15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing d15N trend (increase of 2.5 per mil) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The d15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising d13C in step with rising d15N in these cores is best explained by increasing productivity caused by eutrophication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable-isotope stratigraphy was established for planktonic and benthic foraminifers from upper Miocene-lower Pliocene pelagic sediments from the Mid-Atlantic Ridge. A correlation of stable-isotope and biostratigraphic data with magnetostratigraphic age revealed the following: (1) the late Miocene carbon-isotope shift in the South Atlantic bottom waters was minute compared with the shift reported for other deep-sea locations (Haq et al., 1980), (2) a significant cooling or continental ice-volume increase occurred between 5.7 and 5.2 Ma, and (3) a period of warming or ice-volume decrease followed, with the rate of warming increasing beginning at 4.5 Ma and reaching a climax at 4.3 Ma. The timing of these paleoceanographic events is correlated with the onset and termination of the Messinian salinity crisis in the Mediterranean Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delta18O and delta13C values for the calcareous dinoflagellate species Orthopithonella? globosa (Fütterer 1984) Lentin and Williams 1985 and Pirumella krasheninnikovii (Bolli 1974) Lentin and Williams 1993 from lates Campanian and earliest Maastrichtian of ODP Hole 690C (Weddell Sea, Antarctic Ocean) have been studied in order to evaluate the species' depth habitat in the water column and their applicability in paleoceanographic studies. The calcareous dinoflagellates show isotopic values comparable to probably shallow-dwelling planktic foraminifera from the same sample in delta18O, but have an offset of about -5 ? to -7? in delta13C. This suggests that calcareous dinoflagellate oxygen isotopes may provide information for paleoceanographic reconstructions of sea-surface water temperatures, whereas their extremely light carbon isotope values are probably due to photosynthetic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska, Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (d15N, d13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted d15N and d13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan and Canadian Arctic signatures were intermediate. Between-subpopulation dietary differences predominated over interannual, seasonal, sex, or age variation. Among various brominated and chlorinated contaminants, diet signatures significantly explained variation in adipose levels of polybrominated diphenyl ether (PBDE) flame retardants (14-15%) and legacy PCBs (18-21%). However, dietary influence was contaminant class-specific, since only low or nonsignificant proportions of variation in organochlorine pesticide (e.g., chlordane) levels were explained by diet. Hudson Bay diet signatures were associated with lower PCB and PBDE levels, whereas East Greenland and Svalbard signatures were associated with higher levels. Understanding diet/food web factors is important to accurately interpret contaminant trends, particularly in a changing Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most authigenic carbonates previously recovered from the Cascadia slope have 87Sr/86Sr signatures that reflect shallow precipitation in equilibrium with coeval seawater. There is also evidence for carbonate formation supported by fluids that have been modified by reactions with the incoming Juan de Fuca plate (87Sr/86Sr = 0.7071; Teichert et al., 2005, doi:10.1016/j.epsl.2005.08.002) or with terrigenous turbidites (87Sr/86Sr = 0.70975 to 0.71279; Sample et al., 1993, doi:10.1130/0091-7613(1993)021<0507:CCICFF>2.3.CO;2). We report on the strontium isotopic composition of carbonates and fluids from IODP Site U1329 and nearby Barkley Canyon (offshore Vancouver Island), which have strontium isotope ratios as low as 0.70539. Whereas the strontium and oxygen isotopic compositions of carbonates from paleoseeps in the uplifted Coast Range forearc indicate formation in ambient bottom seawater, several samples from the Pysht/Sooke Fm. show a 87Sr-depleted signal (87Sr/86Sr = 0.70494 and 0.70511) similar to that of the anomalous Site U1329 and Barkley Canyon carbonates. Our data, when analyzed in the context of published elemental and isotopic composition of these carbonates (Joseph et al., 2012, doi:10.1016/j.palaeo.2013.01.012 ), point to two formation mechanisms: 1) shallow precipitation driven by the anaerobic oxidation of methane (AOM) with d13C values as low as -50 per mil and contemporaneous 87Sr/86Sr seawater ratios, and 2) carbonate precipitation driven by fluids that have circulated through the oceanic crust, which are depleted in 87Sr. Carbonates formed from the second mechanism precipitate both at depth and at sites of deep-sourced fluid seepage on the seafloor. The 87Sr-depleted carbonates and pore fluids found at Barkley Canyon represent migration of a deep, exotic fluid similar to that found in high permeability conglomerate layers at 188 mbsf of Site U1329, and which may have fed paleoseeps in the Pysht/Sooke Fm. These exotic fluids likely reflect interaction with the 52-57 Ma igneous Crescent Terrane, which supplies fluids with high calcium, manganese and strontium enriched in the non-radiogenic nucleide. Tectonic compression and dehydration reactions then force these fluids updip, where they pick up the thermogenic hydrocarbons and 13C-enriched dissolved inorganic carbon that are manifested in fluids and carbonates sampled at Barkley Canyon and at Site U1329. The Crescent Terrane may have sourced cold seeps in this margin since at least the late Oligocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen isotopes of chlorins, degradation products of chlorophyll, reflect the isotopic composition of nutrient N utilized by marine phytoplankton communities. Here we show that in sediments of the eastern Mediterranean Pleistocene and Holocene, values of d15N for chlorins and total nitrogen vary in concert, with a consistent offset of ~5 per mil reflecting the fractionation imparted during chlorophyll biosynthesis. Samples from the Integrated Ocean Drilling Program Sites 964 and 969 were analyzed at a sampling resolution of ~4-10 cm, clustered around sapropel events 2, 3, 4 and 5 (~100-170 ka). In low organic content sediments, chlorin values of ~0 per mil coincident with total nitrogen values of ~+ 5 per mil indicate that the latter reflects the original biomass and is not a consequence of diagenetic isotope enrichment. In sapropel horizons, the chlorin and total nitrogen values are 5 per mil more negative (~-5 per mil and ~ 0 per mil, respectively), resembling previously-reported, modern-day water-column particulates (~0 per mil). We suggest that nutrient conditions in the Eastern Mediterranean correspond to three scenarios and that the similarity between sapropel and modern-day bulk d15N is coincidental. Organic-poor marl sediments formed under oligotrophic conditions where surface productivity resulted from upwelling of Atlantic-sourced nitrate. Sapropels were characterized by enhanced diazotrophy that was likely fueled by increased riverine P fluxes to surface waters. Present-day conditions are dominated by anthropogenic N sources. These scenarios agree with a model of sapropel formation in which stratification caused by increased fresh-water inputs led to N fixation due to P:N nutrient imbalance. Enhanced production combined with stratification promoted and maintained anoxic deep waters, consequently increasing organic matter preservation. Such a model may be relevant to interpreting other episodes of intense organic matter deposition in past oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (dDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of dD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of dDwax. While we find that altitudinal effects on dDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence dDwax to varying extents. In the lake-sediment record, dDwax values vary between -134 and -180 per mil over the past 13 kyr. The long-term Holocene pattern of dDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high dDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent dDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on dDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We conclude that while our dDwax record from the Alps does contain climatic information, it is a complicated record that would require additional constraints to be robustly interpreted. This also has important implications for other water-isotope-based proxy records of precipitation and hydro-climate from this region, such as cave speleothems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the potential to use the stable isotopic compositions of planktonic foraminifera as a proxy for the position of the Brazil-Malvinas Confluence (BMC) in the Argentine Basin. For this purpose, we measured the oxygen and carbon isotopic compositions of Globigerinoides ruber (pink and white varieties measured separately), Globigerinoides trilobus, Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides (left- and right-coiling forms measured separately) from a latitudinal transect of 56 surface sediment samples from the continental slope off Brazil, Uruguay and Argentina between 20 and 48°S. Lowest oxygen isotopes values were found in G. ruber (pink), followed by G. ruber (white) and G. trilobus reflecting the highly stratified near surface water conditions north of the BMC. Globigerina bulloides was present mainly south of the BMC and records subsurface conditions supporting earlier plankton tow studies. Globorotalia inflata and G. truncatulinoides (left and right) were both available over the whole transect and calcify in the depth level with the steepest temperature change across the BMC. Accordingly, the delta18O of these species depict a sharp gradient of 2? at the confluence with remarkably stable values north and south of the BMC. Our data show that the oxygen isotopic composition of G. inflata and G. truncatulinoides (left and right) are the most reliable indicators for the present position of the BMC and can therefore be used to define the past migration of the front if appropriate cores are available.