987 resultados para Bellingshausen Sea, ridge-groove province: ridge
Resumo:
Neogene to Quaternary records of biogenic opal contents and opal accumulation rates are presented for Sites 1095, 1096, and 1101, which were drilled during Ocean Drilling Program Leg 178 in the Bellingshausen Sea, a marginal sea in the eastern Pacific sector of the Southern Ocean. The opal records in the drift sediments on the continental rise west of the Antarctic Peninsula provide signals of paleoproductivity, although they are influenced by dissolution in the water column and the sediment column. Opal contents at Sites 1095, 1096, and 1101 show similar long-term trends through the Neogene and Quaternary, whereas the opal accumulation rates exhibit marked discrepancies, which are caused by local differences in opal preservation linked to local variations of bottom current-induced supply of lithogenic detritus. We used a regression describing the relationship between opal preservation and sedimentation rate to extract the signal of primary opal deposition on the seafloor in the Bellingshausen Sea from the opal accumulation in the drift deposits. On long-term timescales, the reconstructed opal depositional rates show patterns similar to those of the opal contents and a much better coherency between the different locations on the Antarctic Peninsula continental rise. Therefore, the estimated opal depositional rates are suggested to represent a suitable proxy for paleoproductivity in the drift setting of the Bellingshausen Sea. Supposing that the sea-ice coverage within the Antarctic Zone was the main factor controlling biological productivity in the Bellingshausen Sea, and thus the estimated opal depositional rates on the continental rise, we reconstructed paleoceanographic long-term changes during the Neogene and Quaternary considering the climatic control on regional and global scales. Slightly enhanced opal depositional rates during the late Miocene are interpreted to indicate warmer climatic conditions in the vicinity of the Antarctic Peninsula than at present. The contribution of heat from the Northern Component Water (NCW) into the Southern Ocean seems only to have played a subordinate role during that time. High opal depositional rates during the early Pliocene document a strong reduction of sea-ice coverage and relatively warm climatic conditions in the Bellingshausen Sea. The early onset of the Pliocene warmth points to a positive feedback of regional Antarctic climate on the global thermohaline circulation. A decrease of opal deposition between 3.1 and 1.8 Ma likely reflects sea-ice expansion in response to reduced NCW flow, caused by the onset and intensification of Northern Hemisphere glaciation. Throughout the Quaternary, a relatively constant level of opal depositional rates in the Bellingshausen Sea indicates stable climatic conditions in the Antarctic Peninsula area.
Resumo:
Two cruises were carried out during the Austral spring-summer (November 1995 - January 1996: FRUELA 95, and January - February 1996: FRUELA 96), sampling in Bellingshausen Sea, western Bransfield Strait and Gerlache Strait. We investigated whether there were any spatial (among locations) or temporal (between cruises) differences in abundance and biomass of microbial heterotrophic and autotrophic assemblages. Changes in the concentration of chlorophyll a, prokaryotes, heterotrophic and phototrophic nanoflagellates abundance and biomass were followed in the above mentioned locations close to the Antarctic Peninsula. Parallel to these measurements we selected seven stations to determine grazing rates on prokaryotes by protists at a depth coincident with the depth of maximum chlorophyll a concentration. Measuring the disappearance of fluorescent minicells over 48 h assessed grazing by the protist community. From prokaryotes grazing rates, we estimated how much prokaryotic carbon was channeled to higher trophic levels (protists), and whether this prokaryotic carbon could maintain protists biomass and growth rates. In general higher values were reported for Gerlache Strait than for the other two areas. Differences between cruises were more evident for the oligotrophic areas in Bellingshausen Sea and Bransfield Strait than in Gerlache Strait (eutrophic area). Higher values for phototrophic (at least for chlorophyll a concentration) and abundance of all heterotrophic microbial populations were recorded in Bellingshausen Sea and Bransfield Strait during late spring - early summer (FRUELA 95) than in mid-summer (FRUELA 96). However, similar results for these variables were observed in Gerlache Strait as in spring-early summer as well as in mid-summer. Also, we found differences in grazing rates on prokaryotes among stations located in the three areas and between cruises. Thus, during late spring-early summer (FRUELA 95), the prokaryotic biomass consumed from the standing stock was higher in Bellingshausen Sea (26%/day) and Gerlache Strait (18-26%/day) than in Bransfield Strait (0.68-14%/day). During mid-summer (FRUELA 96) a different pattern was observed. The station located in Bellingshausen Sea showed higher values of prokaryotic biomass consumed (11%/day) than the one located in Gerlache Strait (2.3%/day). Assuming HNF as the main prokaryotic consumers, we estimated that the prokaryotic carbon consumed by heterotrophic nanoflagellates (HNF) barely covers their carbon requirements for growth. These results suggest that in Antarctic waters, HNF should feed in other carbon sources than prokaryotes.
Resumo:
Although sea-ice extent in the Bellingshausen-Amundsen (BA) seas sector of the Antarctic has shown significant decline over several decades, there is not enough data to draw any conclusion on sea-ice thickness and its change for the BA sector, or for the entire Southern Ocean. This paper presents our results of snow and ice thickness distributions from the SIMBA 2007 experiment in the Bellingshausen Sea, using four different methods (ASPeCt ship observations, downward-looking camera imaging, ship-based electromagnetic induction (EM) sounding, and in situ measurements using ice drills). A snow freeboard and ice thickness model generated from in situ measurements was then applied to contemporaneous ICESat (satellite laser altimetry) measured freeboard to derive ice thickness at the ICESat footprint scale. Errors from in situ measurements and from ICESat freeboard estimations were incorporated into the model, so a thorough evaluation of the model and uncertainty of the ice thickness estimation from ICESat are possible. Our results indicate that ICESat derived snow freeboard and ice thickness distributions (asymmetrical unimodal tailing to right) for first-year ice (0.29 ± 0.14 m for mean snow freeboard and 1.06 ± 0.40 m for mean ice thickness), multi-year ice (0.48 ± 0.26 and 1.59 ± 0.75 m, respectively), and all ice together (0.42 ± 0.24 and 1.38 ± 0.70 m, respectively) for the study area seem reasonable compared with those values from the in situ measurements, ASPeCt observations, and EM measurements. The EM measurements can act as an appropriate supplement for ASPeCt observations taken hourly from the ship's bridge and provide reasonable ice and snow distributions under homogeneous ice conditions. Our proposed approaches: (1) of using empirical equations relating snow freeboard to ice thickness based on in situ measurements and (2) of using isostatic equations that replace snow depth with snow freeboard (or empirical equations that convert freeboard to snow depth), are efficient and important ways to derive ice thickness from ICESat altimetry at the footprint scale for Antarctic sea ice. Spatial and temporal snow and ice thickness from satellite altimetry for the BA sector and for the entire Southern Ocean is therefore possible.