766 resultados para 113-690 (mbsf)
Resumo:
High-resolution records of carbon and oxygen isotopes and benthic foraminiferal accumulation rates for the Eocene-Oligocene section at Ocean Drilling Program Site 689 (Maud Rise, Weddell Sea; paleodepth about 1500 m) were used to infer variations in paleoproductivity in relation to changes in climate and ventilation of the deeper-water column. The benthic foraminiferal abundance and isotope records show short-term fluctuations at periodicities of 100 and 400 ka, implying orbitally driven climatic variations. Both records suggest that intermediate-depth water chemistry and primary productivity changed in response to climate. During the Eocene, productivity increased during cold periods and during cold-to-warm transitions, possibly as a result of increased upwelling of nutrient-rich waters. In the Oligocene, in contrast, productivity maxima occurred during intervals of low delta18O values (presumably warmer periods), when a proto-polar front moved to the south of the location of Site 689. This profound transition in climate-productivity patterns occurred around 37 Ma, coeval with rapid changes toward increasing variability of the oxygen and carbon isotope and benthic abundance records and toward larger-amplitude delta18O fluctuations. Therefore, we infer that, at this time, temperature fluctuations increased and a proto-polar front formed in conjunction with the first distinct pulsations in size of the Antarctic ice sheet. We speculate that this major change might have resulted from an initial opening of the Drake Passage at 37 Ma, at least for surface- and intermediate-water circulation.
Resumo:
Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
Resumo:
We examined diatom preservation patterns in Pliocene age sediments of Jane Basin (ODP Site 697) and compared them with diatom distribution in more northerly sites at various sectors of the Southern Ocean. Our data from Site 697, as well as other sites from around the Southern Ocean, support the view that there was significant ice growth on Antarctica during the late Pliocene. DSDP Site 514 in the Atlantic sector shows increased relative abundance of Eucampia antarctica, an ice-related form, in the upper part of the Gauss Chron with a larger increase just above it. With one exception, all sites included in the present study show increased relative abundance of E. antarctica in the upper part of the Gauss. Our view that there was ice growth on Antarctica during the late Gauss Chron is supported by the results from ODP Site 697. While diatoms are present and percent opal is high in the early and middle Gauss Chron (suggesting more open-ocean conditions), late Gauss sediments contain low percentages of opal and few or no diatoms. This is also true for the early Matuyama Chron. If we accept spring and summer sea-ice cover as the major suppressant of diatom productivity in the Southern Ocean, then we conclude that sea-ice covered the region around Site 697 through much of the year during this interval. Further, the absence of diatoms and the low percentages of opal in middle and late Matuyama chron sediments suggests increased sea-ice cover over the Jane Basin during this time. Although warmer openocean intervals are inferred for intervals near the Olduvai and Jaramillo Subchrons, most of the Matuyama Chron was marked by extensive sea-ice cover with low seasonal contrast. Our results for the early part of the Brunhes Chron are similar, at least for the Jane Basin. During this time, sea-ice cover over the basin apparently extended well into the growing season. In contrast, the later Brunhes Chron is marked by alternating open water (during the growing season) and extensive, almost year-round, sea-ice.
(Figure F3) Orthogonal vector plots of AF demagnetization steps of IODP Hole 308-U1322B (25.26 mbsf)