792 resultados para carbon isotope


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reconstruction of nutrient concentrations in the deep Southern Ocean has produced conflicting results. The cadmium/calcium (Cd/Ca) data set suggests little change in nutrient concentrations during the last glacial period, whereas the carbon isotope data set suggests that nutrient concentrations were higher. We determined the silicon isotope composition of sponge spicules from the Atlantic and Pacific sectors of the Southern Ocean and found higher silicic acid concentrations in the Pacific sector during the last glacial period. We propose that this increase results from changes in the stoichiometric uptake of silicic acid relative to nitrate and phosphate by diatoms, thus facilitating a redistribution of nutrients across the Pacific and Southern Oceans. Our results are consistent with the global Cd/Ca data set and support the silicic acid leakage hypothesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study explores the giant oyster Hyotissa hyotis as a novel environmental archive in tropical reef environments of the Indo-Pacific. The species is a typical accessory component in coral reefs, can reach sizes of tens of centimetres, and dates back to the Late Pleistocene. Here, a 70.2-mm-long oxygen and carbon isotope transect through the shell of a specimen collected at Safaga Bay, northern Red Sea, in May 1996, is presented. The transect runs perpendicularly to the foliate and vesicular layers of the inner ostracum near the ligament area of the oyster. The measured d18O and d13C records show sinusoidal fluctuations, which are independent of shell microstructure. The d13C fluctuations exhibit the same wavelength as the d18O fluctuations but are phase shifted. The d18O record reflects the sea surface temperature variations from 1957 until 1996, possibly additionally influenced by the local evaporation. Due to locally enhanced evaporation in the semi-enclosed Safaga Bay, the d18Oseawater value is estimated at 2.17 per mil, i.e., 0.3-0.8 per mil higher than published open surface water d18O values (1.36-1.85 per mil) from the region. The mean water temperature deviates by only 0.4°C from the expected value, and the minimum and maximum values are 0.5°C lower and 2.9°C higher, respectively. When comparing the mean monthly values, however, the sea surface temperature discrepancy between reconstructed and global grid datasets is always <1.0°C. The d13C signal is weakly negatively correlated with regional chlorophyll a concentration and with the sunshine duration, which may reflect changes in the bivalve's respiration. The study emphasises the palaeogeographic context in isotope studies based on fossils, because coastal embayments might not reflect open-water oceanographic conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses were performed on monospecific or mixed-species samples of benthic foraminifers, as well as on the planktonic species Globigerinoides ruber from a 24-m hydraulic piston core raised on the western flank of the Rio Grande Rise, at DSDP Site 517 (30°56.81'S and 38°02.47'W, water depth 2963 m) in the southwestern Atlantic. This site is presently located in the core of North Atlantic Deep Water (NADW). This is the first long isotopic record of Quaternary benthic foraminifers; it displays at least 30 isotopic stages, 25 of them readily correlated with the standard sequence of Pacific Core V28-239. The depths of both the Bruhnes/Matuyama boundary and the Jaramillo Event based on oxygen isotope stratigraphy agree well with paleomagnetic results. Quaternary faunal data from this part of the Atlantic are dated through isotopic stratigraphy and partially contradict data previously published by Williams and Ledbetter (1979). There was a substantial increase in the size of the earth's major ice sheets culminating at Stage 22 and corresponding to a l per mil progressive increase of d18O maximal values. Further, ice volume-induced isotopic changes were not identical for different glacial cycles. Oxygen and carbon isotope analyses of benthic foraminifers show that during Pleistocene glacial episodes, NADW was cooler than today and that Mediterranean outflow might still have contributed to the NADW sources. The comparison of coiling ratio changes of Globorotalia truncatulinoides with planktonic and benthic oxygen isotope records shows that there might have been southward excursions of the Brazil Current during the Pleistocene, perhaps related to Antarctic surface water surges. The question of the location of NADW sources during glacial maxima remains open.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seven Miocene Pacific Ocean Deep Sea Drilling Project sites from four different water masses (planktonic foraminiferal biogeographic regions) have been correlated using 18 prominent carbon isotopic events defined in the benthic foraminiferal delta13C records in DSDP Site 289. The correlations are based on the assumption that there are global or at least Pacific-wide controls on the delta13C of deep-water [HCO3]**-. Each of the individual delta13C records is correlated to Site 289 based on the shape of the curves in a manner analogous to that used to correlate sea-floor magnetic anomaly patterns. The results of this correlation experiment confirm that planktonic foraminiferal biostratigraphy and carbon isotopic stratigraphy are consistent within the tropical surface water mass and precise to +/-100,000 years. Correlations between surface water masses suggest that the precision of foraminiferal biostratigraphy is on the average less than +/-200,000 years due to the lack of cosmopolitan marker species and diachronism of species occurrences. Carbon isotope stratigraphy used in conjunction with biostratigraphy has the potential to provide an easily utilized, globally applicable, correlation tool (with an interregional precision of +/-100,000 years or better) as more continuous and undisturbed deep-sea sections become available as a result of the Hydraulic Piston Coring Program.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses show that the biserial forarniniferal genus Streptochilus, which was originally described from pelagic sediments on the Eauripik Rise and Ontong Java Plateau, lived deep in the upper water column within the oxygen minimum layer. The species of Streptochilus average from 4 to 19% of the foraminiferal assemblages in which benthic forms compose less than 1 or 2%. Specimens of Streptochilus are selectively dissolved when in contact with the bottom water mass. Their rapid evolutionary turnover of less than a few million years and their wide areal distribution in the equatorial Indo-Pacific are indicative of planktonic foraminifera. Aside from usefulness of the species of Streptochilus as stratigraphic indices, these Neogene biserial planktonic foraminifera are potential indices of paleoceanographic stratification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sulfur content of one rhyolite and four dacite conglomerates was found to be low - from 9 to 97 ppm - similar to that of Quaternary andesites and basalts of the Japanese Islands. However, the d34S values of these samples are unexpectedly high - +23 to +35 per mill - relative to troilite from the Canon Diablo meteorite. The sulfide/sulfate ratios vary among the five samples from 0 to 13. No significant isotope fractionation seems to exist between sulfate and sulfide sulfurs. Carbon in these samples is predominantly in the form of carbonate (and probably CO2). It ranges in concentration from 128 to 721 ppm and in d13C from -2.5 to -20.7 per mill relative to PDB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple layers of sapropels occur widely in the sedimentary record of the Mediterranean Sea and record repetitions of paleoclimatic conditions that favored increased production and preservation of marine organic matter. A combination of hydrogen and carbon isotope analyses of Pleistocene sapropels from the Tyrrhenian Sea reveals new aspects of the factors leading to their deposition. Organic matter dD values that are significantly more negative in sapropels than in adjacent marls indicate a combination of dilution of surface waters by meteoric waters and increased burial of lipid-rich organic matter during periods of sapropel deposition. Organic d13C values in sapropels that are less negative than those in marls suggest periods of markedly elevated marine biological production. The opposite but concordant excursions of these two isotopic parameters imply that the sapropel layers formed from increased export of marine organic matter from the photic zone to the sea floor during periods of greater fluvial delivery of continental nutrients to the Mediterranean Sea. Furthermore, the isotopic evidence indicates that periods of wetter climate were widespread in southern Europe at the same times as in northern Africa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago) (Gradstein et al., 2004), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (Sinton and Duncan, 1997; Kerr, 1998, doi:10.1144/gsjgs.155.4.0619), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a ~30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2 -as indicated by carbon isotope ratios- suggesting a time-lag of up to ~23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic d18O exceeded 3.2 per mil. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 per mil Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.