667 resultados para Methane Flux Control in Ocean Margin Sediments
Resumo:
Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.
Resumo:
Materials from different spheres of the Earth are ultimately delivered to bottom sediments, which serve as a natural recorder of the functioning of other spheres and originate as a result of the accumulation of their substances. Sedimentary material and species of river-transported elements are subjected to dramatic reworking in marginal filters, where river and sea waters are mixed. These processes are most important for the Caspian Sea, where runoffs of rivers (especially the Volga River) and the intense development and transportation of hydrocarbon fuel by tankers and pipelines (related to the coastal petroleum industry in the Sumgait and Baku ports, Apsheron Peninsula) are potential sources of hydrocarbon pollution. Previously obtained data showed that the total content of hydrocarbon fraction (i.e., the sum of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH)) in bottom sediments varied within 29-1820 µg/g. The content of petroleum hydrocarbons in the northeastern Caspian region varied from 0.052 to 34.09 µg/g with the maximum content in the Tengiz field. The content of six polyarenes in the Volga delta sediments was no more than 40 ng/g. To determine the recent HC pollution of bottom sediments and trends in the functioning of the Volga marginal filter, in summer of 2003 and 2004 we analyzed bottom sediments (58 samples) in the river waterway; Kirovsk channel; Bakhtemir and Ikryanoe branches; tributaries of the Kizan, Chagan, and other rivers; and the Caspian seashore.
Resumo:
Benthic foraminiferal distribution patterns throughout the late Maastrichtian Tethyan deep sea are analyzed. Many species are ubiquitously distributed throughout this region and therefore it is hard to assess their ecological preferences. However, five species show distribution patterns, which suggest that they may have distinctive paleoenvironmental preferences. These preferences are interpreted from hypothesized surface circulation and upwelling patterns. Additional information comes from Recent benthic foraminiferal ecology and from responses to the Cretaceous/Paleogene (k/Pg) boundary event. This enables us to assess the ecological preferences of these late Maastrichtian taxa, and establish them as ecological-marker (ecomarker) species for paleoenvironmental interpretation of the late Maastrichtian bathyal-abyssal Tethyan realm. (1) Eouvigerina subsculpturu is suggested to be indicative of reasonably oxygenated upper-middle bathyal environments, though with high abundance of utilizable organic matter. (2) Sliteria varsoviensis is linked to areas of late Maastrichtian upwelling and seems to have been an epibenthic species with an opportunistic life mode. (3) Guvelinellu beccuriiformis and (4) Nuttullides truempyi are considered to be indicative of oligotrophic conditions unless they occur with a large proportion of endobenthic morphotypes. (5) Guvelinellu pertusu is proposed to indicate neritic-middle bathyal environments of the 'boreal' realm, which might be influenced by more seasonal food-fluxes and by higher oxygen levels than similar settings in the (sub)tropics. Finally, the anomalous high abundances of the buliminid species Sitella cf. plunu in deep open ocean environments is discussed in terms of possible mechanisms permitting such a (morphologically) opportunistic species to thrive in such an assumedly oligotrophic environment.
Resumo:
On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf.
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36°N-49°S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e.g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.