966 resultados para Biomass as carbon per individual


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collections made with 150 l sampling bottles and BR 113/140 nets, as well as direct counts from the Mir submersible are used to analyze vertical distribution of total biomass of meso- and macroplankton and biomass distributions of their main component groups in the central oligotrophic regions of the North Pacific. Biomass of mesoplankton in the upper 200 m layer ranges from 3.1 to 8.6 g/m**2, but sometimes it increases up to as much as 98 g/m**2 in local population explosions of salps. Jellies predominate in macroplankton at depths of up to 2-3 km, contributing 97-98% of live weight and 30-70% of biomass as organic carbon. In importance they are followed by micronecton fishes (up to 40% of organic carbon). Contributions of other groups countable from the submersible were negligible. Distributions of species at particular stations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical fluxes of phytoplankton (VF_phyto) and particulate organic carbon (VF_POC) in the White Sea were determined using seven long-term (292 to 296 days) sediment traps moored at five stations at depths 67 to 255 m. Annual VF_phyto and VF_POC ranged from 0.55 to 24.64 g C/m**2 and from 3.7 to 93.9 g C/m**2, respectively. The highest VF_phyto was observed in the Basin region located close to the Gorlo along the Tersk coast. Algal biomass accounted for 15-43% of VF_pOC. Diatoms comprised the most important group accounting for 83-100% in sinking biomass. Thalassiosira nordenskioeldii dominated in VF_phyto at all trap stations except for one in the Basin close to the Onega Bay, where Ditylum brightwellii was the most abundant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large spatial scale study of the diatom species inhabiting waters from the subantarctic (Argentine shelf) to antarctic was made for the first time in order to understand the relationships between these two regions with regard to the fluctuations in diatom abundances in relation with environmental features, their floristic associations and the effect of the Polar Front as a biogeographic barrier. Species-specific diatom abundance, nutrient and chlorophyll-a concentration were assessed from 64 subsurface oceanographic stations carried out during the austral summer 2002, a period characterized by an anomalous sea-ice coverage corresponding to a ''warm year". Significant relationships of both diatom density and biomass with chlorophyll-a (positive) and water temperature (negative) were found for the study area as a whole. Within the Subantarctic region, diatom density and biomass values were more uniform and significantly (in average: 35 and 11 times) lower than those of the Antarctic region, and did not correlate with chlorophyll-a. In antarctic waters, instead, biomass was directly related with chlorophyll-a, thus confirming the important contribution of diatoms to the Antarctic phytoplanktonic stock. A total of 167 taxa were recorded for the entire study area, with Chaetoceros and Thalassiosira being the best represented genera. Species richness was maximum in subantarctic waters (46; Argentine shelf) and minimum in the Antarctic region (21; Antarctic Peninsula), and showed a significant decrease with latitude. Floristic associations were examined both qualitatively (Jaccard Index) and quantitatively (correlation) by cluster analyses and results allowed differentiating a similar number of associations (12 vs. 13, respectively) and two main groups of stations. In the Drake Passage, the former revealed that the main floristic change was found at the Polar Front, while the latter reflected the Southern ACC Front as a main boundary, and yielded a higher number of isolated sites, most of them located next to different Antarctic islands. Such differences are attributed to the high relative density of Fragilariopsis kerguelensis in Argentine shelf and Drake Passage waters and of Porosira glacialis and species of Chaetoceros and Thalasiosira in the Weddell Sea and near the Antarctic Peninsula. From a total of 84 taxa recorded in antarctic waters, only 17 were found exclusively in this region, and the great majority (67) was also present in subantarctic waters but in extremely low (< 1 cell/l) concentrations, probably as a result of expatriation processes via the ACC-Malvinas Current system. The present results were compared with those of previous studies on the Antarctic region with respect to both diatom associations in regular vs. atypically warm years, and the distribution and abundance of some selected planktonic species reported for surface sediments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_UNLUATA_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during March and April 2008 in the Northern Libyan Sea, Southern Aegean Sea and in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets and are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_GR2-Mesozooplankton faecal pellet production rates dataset is based on samples taken during August and September 2008 in the Northern Libyan Sea, Southern Aegean Sea and the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during April 2008 in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).