683 resultados para 13077-090


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low planktic and benthic d18O and d13C values in sediments from the Nordic seas of cold stadials of the last glaciation have been attributed to brines, formed similar to modern ones in the Arctic Ocean. To expand on the carbon isotopes of this hypothesis I investigated benthic d13C from the modern Arctic Ocean. I show that mean d13C values of live epibenthic foraminifera from the deep Arctic basins are higher than mean d13C values of upper slope epibenthic foraminifera. This agrees with mean high d13C values of dissolved inorganic carbon (DIC) in Arctic Bottom Water (ABW), which are higher than mean d13CDIC values from shallower water masses of mainly Atlantic origin. However, adjustments for oceanic 13C-Suess depletion raise subsurface and intermediate water d13CDIC values over ABW d13CDIC ones. Accordingly, during preindustrial Holocene times, the d13CDIC of ABW was as high or higher than today, but lower than the d13CDIC of younger subsurface and intermediate water. If brine-enriched water significantly ventilated ABW, brines should have had high d13CDIC values. Analogously, high-d13CDIC brines may have been formed in the Nordic seas during warm interstadials. During cold stadials, when most of the Arctic Ocean was perennially sea-ice covered, a cessation of high-d13CDIC brine rejection may have lowered d13CDIC values of ABW, and ultimately the d13CDIC in Nordic seas intermediate and deep water. So, in contrast to the idea of enhanced brine formation during cold stadials, the results of this investigation imply that a cessation of brine rejection would be more likely.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Downward particle flux was measured using sediment traps at various depths over the Porcupine Abyssal Plain (water depth ab. 4850 m) for prolonged periods from 1989 to 1999. A strong seasonal pattern of flux was evident reaching a maximum in mid-summer. The composition of the material changed with depth, reflecting the processes of remineralisation and dissolution as the material sank through the water column. However, there was surprisingly little seasonal variation in its composition to reflect changes in the biology of the euphotic zone. Currents at the site have a strong tidal component with speeds almost always less than 15 cm/sec. In the deeper part of the water column they tend to be northerly in direction, when averaged over periods of several months. A model of upper ocean biogeochemistry forced by meteorology was run for the decade in order to provide an estimate of flux at 3000 m depth. Agreement with measured organic carbon flux is good, both in terms of the timings of the annual peaks and in the integrated annual flux. Interannual variations in the integrated flux are of similar magnitude for both the model output and sediment trap measurements, but there is no significant relationship between these two sets of estimates. No long-term trend in flux is evident, either from the model, or from the measurements. During two spring/summer periods, the marine snow concentration in the water column was assessed by time-lapse photography and showed a strong peak at the start of the downward pulse of material at 3000 m. This emphasises the importance of large particles during periods of maximum flux and at the start of flux peaks. Time lapse photographs of the seabed show a seasonal cycle of coverage of phytodetrital material, in agreement with the model output both in terms of timing and magnitude of coverage prior to 1996. However, after a change in the structure of the benthic community in 1996 no phytodetritus was evident on the seabed. The model output shows only a single peak in flux each year, whereas the measured data usually indicated a double peak. It is concluded that the observed double peak may be a reflection of lowered sediment trap efficiency when flux is very high and is dominated by large marine snow particles. Resuspension into the trap 100 m above the seabed, when compared to the primary flux at 3000 m depth (1800 mab) was lower during periods of high primary flux probably because of a reduction in the height of resuspension when the material is fresh. At 2 mab, the picture is more complex with resuspension being enhanced during the periods of higher flux in 1997, which is consistent with this hypothesis. However there was rather little relationship to flux at 3000 m in 1998. At 3000 m depth, the Flux Stability Index (FSI), which provides a measure of the constancy of the seasonal cycle of flux, exhibited an inverse relationship with flux, such that the highest flux of organic carbon was recorded during the year with the greatest seasonal variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present data set is a worldwide compilation from 11 oceanographic expeditions during which an underwater vision profiler (UVP) was deployed in situ to determine the vertical distribution (biomass) of 4 taxonomic groups of plankton larger than 600 µm, belonging to the Infrakingdom Rhizaria, including Collodaria, Acantharia, Phaeodaria and other Rhizaria. Vertical distributions are binned in four layers: 0-100, 0-200, 100-500 and 0-500 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic susceptibility and ice-rafted debris of surface sediments in the Nordic Seas were investigated to reconstruct source areas and recent transport pathways of magnetic minerals. From the distribution of magnetic susceptibility and ice-rafted debris and published data on petrographic tracers for iceberg drift, we reconstructed a counter-clockwise iceberg drift pattern during cooler phases in the Holocene, which is similar to conceptual and numerical models for Weichselian iceberg drift. The release of basaltic debris at Scoresby Sund played a significant role for the magnetic signature of stadial/interstadial events during isotope stage 3 recorded in sediment cores of the Nordic Seas.