728 resultados para 178-1096
Resumo:
Ash layers from Deep Sea Drilling Project site 178 in the northeast Pacific Ocean have been dated by the 40Ar-39Ar stepwise heating technique to resolve published discrepancies concerning the length of time explosive volcanism has affected the eastern Aleutian arc and Alaskan Peninsula. The results of the investigation indicate that the record of ash-fall deposition at site 178 extends back at least 6.5 m.y. Assuming that 6.5 m.y. ago marks the onset of renewed calc-alkalic volcanism of the volcanic arc, proposed models of continuous and discontinuous motion between the Pacific and North American lithospheric plates can be evaluated. If appreciable time elapsed between the onset of subduction and the onset of arc volcanism, the 6.5-m.y. record of ash-fall deposition in the north-east Pacific is most compatible with models of continuous plate motion throughout late Cenozoic time.
Resumo:
Strontium isotope ratios from multiple plates of two barnacle fragments from Site 1103 (Ocean Drilling Program Leg 178) provide maximum age estimates for the oldest glacial sedimentary package drilled. Three moderately preserved barnacle fragments from 262.63 meters below seafloor (mbsf) yielded a mean best-fit age of 7.4 Ma. A single, well-preserved fragment from the same horizon yielded a best-fit age of 12.2 Ma. Two moderately preserved fragments from 262.98 mbsf yielded a mean best-fit age of 7.8 Ma. The calculated mean strontium ages of 7.8 and 7.4 Ma agree well with the diatom estimates of 8.68 to 5.89 Ma for the underlying sediments.
Resumo:
Continuous sediment color records with a resolution of one measurement per millimeter were generated for Site 1098 (Palmer Deep, Antarctic Peninsula) from digital images of the core surfaces to test if the laminated intervals at this site will allow for analysis of high-frequency climate variability in the Circum-Antarctic. Long-term variation in color values correlates with gamma-ray attenuation bulk density. Darker colors are found in laminated intervals with lower bulk density, high biogenic silica, and high total organic carbon content. Darker color values result from the addition of dark laminae to background sediments that show little variation in color. The thicknesses of dark and light laminae were measured in the top 25 meters composite depth to determine the temporal resolution of the laminae. The alternation between dark, biogenic-rich laminae and background sediment essentially represents an annual cycle, but the sediment is not consistently varved. The modal thickness of light laminae is close to the long-term average annual accumulation rate, and results indicate that approximately half of the dark/light couplets in distinctly laminated intervals represent a single year. Missing biogenic laminae are interpreted to represent reduced primary productivity during cold years with delayed breakup of the sea-ice cover.
Resumo:
Prof. H. H. W. Menard has brought together nearly all that was known of the Pacific geology in the early 1960s. His book contains a particular chapter on manganese nodules giving a stimulating review of the features and processes known to govern their distribution and chemical composition.
Resumo:
Detailed study of four Holocene sediment intervals from Ocean Drilling Program Site 1098 (Palmer Deep, Antarctic Peninsula) reveals that in situ dissolution of calcareous foraminifers in the core repository has significantly altered and in some cases eliminated calcareous foraminifers. Despite dissolution, the foraminifer and supporting diatom data show that the most open-ocean and reduced sea-ice conditions occurred in the early Holocene. The influence of Circumpolar Deep Water was greatest during the early Holocene but continued to be important throughout the Holocene. An increase in sea-ice proximal diatoms at 3500 cal. BP documents an expansion in the amount of persistent sea ice. The inferred increase in sea ice corresponds with an overall increase in magnetic susceptibility values. Benthic foraminifers are present in all samples from the Palmer Deep, including the middle Holocene pervasively laminated sediments with low magnetic susceptibility values. The consistent presence of mobile epifaunal benthic foraminifers in the laminated sediments demonstrates that the laminations do not represent anoxic conditions. The uniform composition of the agglutinated foraminifer fauna throughout the late Holocene suggests that the Palmer Deep did not experience bottom-water-mass changes associated with the alternating deposition of bioturbated or laminated sediments.